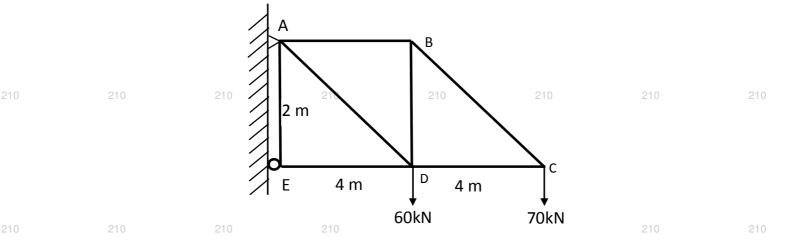

| 210                                               | 210           | 210                                                             | 210                      | 210                                     | 210                           | 210                     | 210 |  |  |  |  |  |
|---------------------------------------------------|---------------|-----------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------|-------------------------|-----|--|--|--|--|--|
|                                                   |               |                                                                 |                          |                                         |                               |                         |     |  |  |  |  |  |
|                                                   | Registr       | ation No :                                                      |                          |                                         |                               |                         |     |  |  |  |  |  |
|                                                   |               |                                                                 |                          |                                         |                               |                         |     |  |  |  |  |  |
| 210                                               | Total N       | umber of Pages :                                                | <b>03</b> <sub>210</sub> | 210                                     | 210                           | 210 B.Te                | 210 |  |  |  |  |  |
| 2 <sup>nd</sup> Semester Back Examination 2017-18 |               |                                                                 |                          |                                         |                               |                         |     |  |  |  |  |  |
|                                                   |               |                                                                 |                          | CHANICS<br>AEIE, AERO, AU               | JTO,                          |                         |     |  |  |  |  |  |
|                                                   |               | MED, BIOTECH, C<br>SHION, FAT, IEE,                             | HEM, CIVIL, CS           | SE, ÉCE, EEE, E                         | EIE, ELECTRIC                 |                         |     |  |  |  |  |  |
|                                                   |               |                                                                 | MINERAL, MIN             | •                                       | • •                           | • •                     |     |  |  |  |  |  |
| 210                                               | 210           | 210                                                             | Max                      | e : 3 Hours<br>Marks : 70<br>DE : C1123 | 210                           | 210                     | 210 |  |  |  |  |  |
|                                                   |               | •                                                               |                          | compulsory an<br>t hand margin i        | ndicate marks                 |                         |     |  |  |  |  |  |
|                                                   | 04            |                                                                 |                          |                                         |                               | (2 x 1                  | 0)  |  |  |  |  |  |
| 210                                               | Q1₂₁₀<br>a)   | Answer the follow<br>State and explain F                        | •                        | 210                                     | 210                           | 210                     | 210 |  |  |  |  |  |
|                                                   | a)<br>b)      | What is the condition                                           | •                        |                                         | equilibrium?                  |                         |     |  |  |  |  |  |
|                                                   | c)            | State theorem of V                                              |                          |                                         | equilionam.                   |                         |     |  |  |  |  |  |
|                                                   | d)            | Differentiate betwe                                             | •                        | e and angle of frid                     | ction.                        |                         |     |  |  |  |  |  |
|                                                   | e)            |                                                                 |                          |                                         |                               |                         |     |  |  |  |  |  |
| 210                                               | 210 <b>f)</b> | State the <sup>2</sup> difference<br>Principle.                 | e between Newto          | on's 2 <sup>n<u>d</u>1Law of r</sup>    | motion <sup>2</sup> and D'Ale | embert's <sup>i 0</sup> | 210 |  |  |  |  |  |
|                                                   | g)            | What do you under                                               | rstand by conserv        | ation of momentu                        | m?                            |                         |     |  |  |  |  |  |
|                                                   | h)            | What do you under                                               | rstand by coefficie      | ent of restitution?                     |                               |                         |     |  |  |  |  |  |
|                                                   | i)            | What do you unde                                                | erstand by momen         | t of momentum?                          |                               |                         |     |  |  |  |  |  |
|                                                   | j)            | Write the express explaining each ter                           |                          |                                         |                               |                         |     |  |  |  |  |  |
| 210                                               | 210           | 210                                                             | 210                      | 210                                     | 210                           | 210                     | 210 |  |  |  |  |  |
|                                                   | Q2 a)         | Two spheres P and<br>horizontal plane a<br>reaction at D, the p | s shown in the           | figure. If P=10kN                       | and Q=20kN,                   |                         |     |  |  |  |  |  |
| 210                                               | 210           | 210                                                             | 210                      | P A <sup>210</sup>                      | 210                           | 210                     | 210 |  |  |  |  |  |
|                                                   |               | _                                                               | B                        |                                         |                               |                         |     |  |  |  |  |  |
| 210                                               | 210           | 210                                                             | 210                      | 210                                     | 210                           | 210                     | 210 |  |  |  |  |  |
|                                                   |               |                                                                 |                          |                                         |                               |                         |     |  |  |  |  |  |

210 210 210 210 210 210 210 210

210


| 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |

b) Determine the magnitude of the horizontal force P applied at the centre C of the roller of weight Q = 2500 N and radius r = 200 mm which will be necessary to pull it over a 50 mm curb as shown in the figure.



10cm

В



10

210

| 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |

Q5 a) State and prove the 1<sup>st</sup> theorem of Pappus.
b) A 100kg block is resting on a horizontal plane. Find the magnitude of the force required to give the block an acceleration of 3m/s<sup>2</sup> to the right. The coefficient of kinetic friction between the block and plane is 0.25.

|     |                                           | of kinetic friction bet                                                                                             | ween the block and                                                     | l plane is 0.25                  |                                    |                          |     |
|-----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------|------------------------------------|--------------------------|-----|
| 210 | 210                                       | 210                                                                                                                 | 30°                                                                    | 210                              | 210                                | 210                      | 210 |
| 210 | 210                                       | 210                                                                                                                 | 210                                                                    | 210                              | 210                                | 210                      | 210 |
| 210 | Q6 a)                                     | A stone is thrown from<br>of 40° to the horizon<br>distance from the p<br>and the velocity at the                   | om the top of a bui<br>tal with an initial sp<br>oint of projection to | lding of 30m h<br>beed of 30m/s. | eight upward at<br>Determine the h | an angle (5<br>orizontal |     |
| 210 | <b>b)</b><br>210                          | A motorist travelling<br>comes to a stop aff<br>car to stop (b) the co                                              | g at a speed of 90<br>ter skidding 50m. [                              | Determine (a)                    | the time require                   | d for the                | 210 |
| 210 | Q7                                        | The mass of the tw 180mm. Knowing the acceleration of $m_1$ .                                                       | o step pulley as sh                                                    | own is 180kg                     |                                    | ration is (1             |     |
| 210 | 210                                       | 210                                                                                                                 | 210                                                                    |                                  | 210                                | 210                      | 210 |
| 210 | 210                                       | 210                                                                                                                 | 21( m <sub>1</sub>                                                     | 1(m <sub>2</sub>                 | 210                                | 210                      | 210 |
| 210 | Q8<br>a)<br>b)<br>c)<br><sub>210</sub> d) | Write short answer<br>Principle of Virtual V<br>Parallel Axis and Pe<br>Different methods of<br>Short notes on Impu | Vork<br>erpendicular Axis th<br>f truss analysis                       |                                  | 210                                | <b>(5 x</b><br>210       | 210 |

| 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     |     |     |     |     |     |     |

(5) (5)