Registr	ation No :	
Total Number of Pages: 02 210 210 210 210 210 210 210		
	Part – A (Answer all the questions) Answer the following questions: multiple type or dash fill up type: $L^{-1}\left[\frac{s+3}{s^2-s-2}\right] = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	(2 x 10)
b) c) d) e) f) g) 210 h) i)	The Laplace transformation of the $function$ $f(t)=(5^t)$ is? The fundamental period of $f(x)=10^{100}sin^2x+10^{100}cos^2x$ is? Using Gamma function finds the value of $\int_0^\infty x^6e^{-2x}dx$ is? curl (grad $f)=$? The Fourier sine transformation of the function $f(x)=e^{-ax}$ (a>0) is? The value of $\int_C F(r)\cdot dr$, where $F=[y^2,-x^2]$ and C : Be the line segment from $(0,0)$ to $(1,4)$ is? The value of integral $\int_0^1 x^4(1-x)^2 dx$ is The value of $t*sint$ is? The value of the constant 'b' such that $f(x,y,z)=[bx^2y+yz,\ xy^2-xz^2,\ 2xyz-2x^2y^2]$ has divergence zero is?) 2
Q2 210 a) b) c)	Answer the following questions: Short answer type: Find the Laplace transformation of the function $f(t) = \cosh at \sinh bt$ Find $\nabla^2 f$ where $f = e^{2x} \sin 2y$. Write the sufficient condition for existence of Laplace transformation of a function. Find the Directional derivative of the function $f = x^2 + y^2$ at a point p (1,1) in the direction $\vec{a} = 2\hat{i} - 4\hat{j}$	(2 x 10)
e) ₂₁₀ f) g) h)	State Green's theorem in plane. Find the Laplace transformation of the unit impulse function $_{210}$ $\delta(t-2^{2017})$ and The unit step function $U(t-2^{2017})$ Find the Fourier sine series of the function $f(x)=-100^{10}(-\pi < x < \pi)$; $f(x)=100^{10}(0 < x < \pi)$ Find a parametric representation of the Parabolic equation $z=9(x^2+y^2)$) 2
i) ₂₁₀ j)	Find L[f(t)], Where $f(t) = \begin{cases} 1; 0 < t < 1 \\ 2; 2 < t < 4 \\ 0; t > 4 \end{cases}$ Find the value of $L^{-1}\left[\frac{s^2+6}{(s^2+1)(s+4)}\right]$) 2

Part - B (Answer any four questions)

- Q3 a) Solve the following initial value problem using Laplace transformation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = \cos 2t \text{ with } y(0) = 2, y'(0) = 1$
 - **b)** Show that $L\left(\frac{\cos\sqrt{t}}{\sqrt{t}}\right) = \sqrt{\frac{\pi}{s}}e^{\frac{210}{(-1/4s)}}$ (5)
- Q4 a) Verify Green's Theorem in the plane for $\oint_C (xy+y^2)dx + x^2dy$, where 'C' is the closed curve of the region bounded by $y = x^2$ and y = x
 - **b)** Find the area bounded by one arch of the cycloid $\mathbf{x} = a(\theta \sin \theta), y = a(1 \cos \theta)$; $0 \le \theta \le 2\pi$
- **Q5** a) Prove that the integral $\int_0^\infty \frac{\sin \omega \cos \omega x}{\omega} d\omega = \begin{cases} \frac{\pi}{2} ; 0 \le x < 1 \\ \frac{\pi}{4} ; x = 1 \\ 0; x > 1 \end{cases}$ (10)
 - **b)** Prove that $\Gamma(-\frac{7}{2}) = \frac{2^4 \sqrt{\pi}}{105}$ (5)
- Q6 a) Solve the following integral equation using Laplace transformation $y(t) = 1 + \int_0^t \cos(t-u)y(u)du$ (10)
 - **b)** Using convolution prove that $2*2*2*\cdots *2(upto'K'times) = \frac{2^{K}t^{K-1}}{(K-1)!}$ (5)
- Q7 a) Verify Stokes Theorem, when $F = y\hat{\imath} + (x 2xz)\hat{\jmath} xy\hat{k}$ and surface 'S' Is the part of the sphere $x^2 + y^2 + z^2 = a^2$ above the x-y plane. (10)
 - **b)** Find the total Mass of a mass distribution of density $f(x,y,z)=e^{-x-y-z}$ in a region T: $0 \le x \le 1-y, 0 \le y \le 1, 0 \le z \le 2$
- Q8 a) Verify Divergence Theorem for $F = z\hat{\imath} + x\hat{\jmath} yz\hat{k}$ taken over the surface of the cylinder $x^2 + y^2 = 9$ included in the first octant between z = 0 and z = 4
 - b) Find the coordinates of the center of gravity of a mass of density f(x,y) = 1 in the region R: the triangle with vertices (0,0), (b,0) and $(\frac{b}{2},h)$
- Q9 a) Find the Fourier Transformation of $f(x) = \begin{cases} 0, & x < 0 \\ e^{-x^2}, & x > 0 \end{cases}$ (10)
 - **b)** Find the Fourier series expansion of $f(x) \stackrel{=}{=} 0 \begin{cases} \frac{1+2x}{2} & if -\frac{1}{2} < x < 0 \\ \frac{1-2x}{2} & if 0 < x < \frac{1}{2} \end{cases}$ (5)