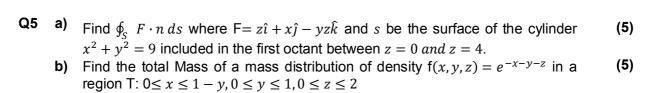
210 BIO!	2 nd Semester Back Examination 2017-18 MATHEMATICS-II BRANCH : AEIE, AERO, AUTO, MED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, E	-	•	2
210	Q.CODE : C601 Answer Question No.1 which is compulsory and any five from the I The figures in the right hand margin indicate marks.	210		2
	Answer all parts of a question at a place.		(010)	
Q1	Answer the following questions:		(2 x 10)	
210 a)	Find $L[e^{-t}\cos 2t]$. Find $L[f(t)]$, Where $f(t) = \begin{cases} 4; 0 < t < 1 \\ 5; 2 < t < 4 \\ 6; t > 4 \end{cases}$	210		2
c)	The Fourier sine transformation of the function $f(x) = x^2$ if $0 < x < 1$ and $f(x) = 0$ if $x > 1$.			
d)	Find the Directional derivative of the function $f = x - y$ at a point p (4,5) in the direction $\vec{a} = 2\hat{\imath} + \hat{\jmath}$	е		
₂₁₀ e)	$\delta(t-1)$ and The unit step function $U(t-5)$.	210		2
f)	What is the value of $\iint_R 2 dx dy$, $R: 0 \le x \le 1, 0 \le y \le \sqrt{1 - x^2}$?			
g)	Find the unit normal vector of the surface $x^2 - y^2 + z^2 = 1$			
h) i)	Evaluate $L^{-1}\left[\frac{1}{(s^2+1)(s+1)}\right]$. Find the value of $e^{3t}*e^{2t}$.			
i) j)	Find the value of $e^{x} * e^{x}$. Find $\nabla^2 f$ where $f = e^{2x} \sin 2y$.			
210			(5)	2
Q2 a)	Solve the following initial value problem using Laplace transformation $\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 4x^2 \text{ with } y(0) = 1, y'(0) = 4?$		(5)	
b)	dt^2 dt $2y = 4x$ $with y(0) = 1, y(0) = 4$: Solve the following integral equation using Laplace transformation		(5)	
ŕ	$t = 1 + \int_0^t \sin(t - u)y(u)du.$			
Q3 ₁₀ a)	Find the coordinates of the center of gravity of a mass of density $f(x,y) = 1$ in the region R: the triangle with vertices $(0,0)$, $(b,0)$ and (b,h) .	210	(5)	2
b)	Prove that $L\left(\frac{\sin \alpha t}{t}\right) = \cot^{-1}\left(\frac{s}{\alpha}\right), \alpha > 0$		(5)	
Q4 a)	Find the Fourier series expansion of $f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 1 - x & \text{if } 1 < x < 2 \end{cases}$ of period	d	(5)	
₂₁₀ b)	p = 2. Find the Fourier series expansion of $f(x) = \begin{cases} x & \text{if } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$	210	(5)	2

Registration No :



- Using Green's Theorem find the line integral Q6 (5) $\oint_C (y dx - x dy)$, Where, 'C' is the circle $x^2 + y^2 = \frac{1}{4}$.
 - Find the area of the region in the first quadrant under the arc of the Limaconr= $1+2\cos\theta$; $0\leq\theta\leq\frac{\pi}{2}$. (5)
- Prove that the integral $\int_0^\infty \frac{\cos \omega x + \omega \sin \omega x}{1 + \omega^2} d\omega \stackrel{\text{def}}{=} \begin{cases} 0; & x < 0 \\ \frac{\pi}{2}; & x = 0 \end{cases}$ **Q7**²¹⁰ (10)
- Q8 Write short answer on any TWO: (5×2)

 - Find $L[t^2 \sin 2t]$. Evaluate $L^{-1}\left[\frac{s+4}{(s^2+4s+8)}\right]$.
 - Find $\Gamma(-\frac{9}{2})$. Find the Fourier cosine series expansion of f(x) = 2 - x (0 < $x < \pi$).