Registration No.:		-							
Total number of printed pages – 3							B. Tech		
									BS 1101

First Semester Examination - 2013

MATHEMATICS - I

QUESTION CODE: C-609

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

(a) What is the degree and order of the differential equation whose general solution is

 $\sin y = ax^2 + be^x$, where a and b are two arbitrary constants?

- (b) Define a linear differential equation of second order and give one example.
- (c) What do you mean by integrating factor? How it helps to solve a differential equation?
- (d) Find the general solution of the differential equation $y^{11} 8y = 0$.
- (e) Find the radius curvature at any point on the curve $y = c \cosh x/c$.
- (f) Find the asymptotes of the curve $y(x-y)^2 = x + y$.
- (g) What does convergence of power series mean? How would you test it?
- (h) Find the radius of convergence of the series $\sum_{m=0}^{\infty} \frac{x^{2m+1}}{(2m+1)!}$
- (i) What is the rank of a matrix? Why is it of basic importance?
 - (j) What is a basis of eigen vectors? When does it exist?

2.	Solve the following	differential equations
	COIVE GIE TOHOTTHIS	differential equations

(a)
$$\frac{dy}{dx} - (1 + \frac{3}{x})y = x + 2$$
, $y(1) = e - 1$

(b)
$$(2x + e^y) dx + xe^y dy = 0$$
 5

3. Find the general solution of the differential equations:

(a)
$$xy^{11} - y^1 = (3 + x) x^2 e^x$$
 5

(b)
$$y^{11} - 2y^1 + y = e^x/x^3$$

4. (a) Find a power series solution of the differential equation 5 $(1 - x^2)v^{11} - 2xv^1 + 2v = 0$

(b) Show that
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$
 5

- 5. (a) Solve the following system of linear equations: 5x + 3y z = 0; 5x 3y + z = 7; 8x + 9y 3z = 2
 - (b) Find the symmetric coefficient matrix C of the quadratic form Q = x^TCx given by

- 6. (a) If λ_1 , λ_2 , ..., λ_k be distinct eigenvalues of an n × n matrix, then show that the corresponding eigen vectors \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_k form a linearly independent set.
 - (b) Find out what type of conic section is represented by the following quadratic form and transform it to principal axes. $9x_1^2 6x_1x_2 + x_2^2 = 40$

7. (a) Find a basis of eigen vectors and diagonalize the following matrix:

$$\begin{bmatrix} 15 & 6 & -12 \\ 4 & 10 & -2 \\ -4 & 8 & -7 \end{bmatrix}$$

(b) Find the radius of curvature of the curve $r = a(1 + \cos \theta)$ at the point where the tangent is parallel to the initial line.

5

5

- 8. (a) Find the asymptote of the curve (x + y) (x y) (2x y) 4x (x 2y) + 4x = 0
 - (b) Find the equation of the straight line on which lie three points of intersection of the cubic

$$x^3 + 2x^2y - xy^2 - 2y^3 + 4y^2 + 2xy + y - 1 = 0$$