| Registration No. : |  |  |  |  |  |  |  | q |  |  |  |
|--------------------|--|--|--|--|--|--|--|---|--|--|--|
|--------------------|--|--|--|--|--|--|--|---|--|--|--|

Total number of printed pages - 2

B. Tech

2×10

**BSCM 2101** 

CENTRAL

## First Year Special Examination – 2014 MATHEMATICS – I

BRANCH(S): BIOTECH, CSE, EC, EEE, ETC, IT, TEXTILE

QUESTION CODE: G 351

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which are compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- Answer the following questions :
  - (a) What is the curvature of the cycloid  $s = \sin \Psi$  at  $\Psi = \pi/6$ ?
  - (b) What is the only asymptote to the curve y = lnx?
  - (c) Solve the equation (1-x)dy (1+y)dx = 0
  - (d) If the two independent solution (bases) of a linear homogeneous ordinary differential equation are cos(2lnx) and sin(2lnx) then write down the equation.
  - (e) If  $y_1 = e^{3x}$  and  $y_2 = xe^{3x}$  then write down the Wronskian of  $y_1$  and  $y_2$ .
  - (f) Find the radius of curvature of the power series  $\sum_{m=0}^{\infty} \frac{(x-3)^m}{3^m}$
  - (g) Obtain the Legendre's polynomial  $P_2(x)$  using Rodrigues's formula.
  - (h) Find the Laplace transform of e-t sin 5t.
  - (i) Find Laplace inverse of  $\frac{e^{-4s}}{s^2}$
  - (j) Find the convolution t \* t.
- 2. (a) Find the radius of curvature of the curve  $x = a\cos 3t$ ,  $y = a\sin 3t$  at  $t = \pi/4$ .

- (b) Find all the asymptotes of  $x^{4}y + 2x^{3}y^{2} x^{2}y^{3} 2xy^{4} x^{3}y + xy^{3} + x^{2} + y^{2} + 1 = 0$
- 3. (a) Trace the curve  $y = x^3$  by proper investigation.

(b) Solve the equation 
$$\frac{dy}{dx} + y \cos x = y^n \sin 2x$$
 5

- 4. (a) A thermometer, reading 10°C is brought into a room whose temperature is 23°C. Two minutes later the thermometer reading is 18°C. How long will it take until the reading is 22.8°C?
  - (b) Solve the equation:  $(\cos wx + w \sin wx)dx + e^x dy = 0$ , y(0) = 1
- 5. (a) Solve  $x^2y'' 2xy' + 2y = 0$ , y(1) = 1.5 and y'(1) = 1.
  - (b) Solve  $y'' 4y = e^{-2x} 2x$
- 6. (a) Find the current I at any time t for the RLC circuit with R = 8 ohms L = 2 henrys, C = 0.1 farad, E = 10 volts with zero initial current and charge. 5
  - (b) Prove the Bonnet's recursion formula for Legendre's polynomial  $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$

7. (a) Show that 
$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 5

(b) Solve 
$$y'' + y = r(t)$$
,  $y(0) = y'(0) = 0$ ,  $r(t) = \begin{cases} t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$ 

- 8. (a) Solve the integral equation using Laplace Transform  $y(t) + 2 \int\limits_0^t y(\tau) \cos(t \tau) d\tau = \cos t$ 
  - (b) Solve the given system of differential equations using Laplace Transform 5  $y'_1 = 5y_1 + y_2$ ,  $y'_2 = y_1 + 5y_2$ ,  $y_1(0) = 1$ ,  $y_2(0) = -3$

5

5