Registration No. :					a a						
--------------------	--	--	--	--	-----	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

BSCM 2102

First Year Special Examination – 2014 MATHEMATICS – II

BRANCH(S): BIOTECH, CSE, EC, EEE, ELECTRICAL, IT

QUESTION CODE: G 609

Full Marks - 70

Time - 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Prove that if A is a non-singular square matrix, then A⁻¹ is also nonsingular.
- (b) Verify the following matrix is symmetric or skew-symmetric

- (c) Show that the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ is unitary.
- (d) Define Hermitian, Skew-Hermitian, orthogonal, unitary matrices.
- (e) Find the projection of $\mathbf{a} = (1, 4, 2)$ over $\mathbf{b} = (3, 2, 1)$.
- (f) Define directional derivative of a vector field.
- (g) Define exactness of an integral.
- (h) State Gauss divergence theorem.
- (i) What is a half range series?
- (j) Write the formula for Fourier series expansion of any function of period 2I.

- 2. (a) Solve the system of equations using Gauss elimination method $3x_1 + 2x_2 + 7x_3 = 4$ $3x_1 + 4x_2 + x_3 = 7$ $2x_1 + 3x_2 + x_3 = 5$
 - (b) Find a basis of the eigen vectors and diagonalize the following matrix: 5

- 3. (a) Prove that every square matrix can be expressed as sum of a symmetric and skew symmetric matrix.
 - (b) Find the type of conic section represented by the following quadratic form $7x^2 + 6xy + 7y^2 = 200$.
- 4. (a) Find the angle between two surfaces x + y + z = 8 and 2x + y z = 3. 5
 - (b) If $f(x, y, z) = x^2 + y^2 z$, calculate curl (gradf).
- 5. (a) Find the scalar potential of a vector field is given by $\mathbf{A} = (x^2 + xy^2) \mathbf{i} + (x^2y + y^2) \mathbf{j}$
 - (b) Find directional derivative of $f = xy^2 3xyz$ at (1, 2, 2) in the direction of normal to the surface $x^2 + y^2 z^2 = 1$ at (1, 1, 1).
- 6. (a) Find the integral $\int f.dr$ where f = (2z, x, -y), r = (cost, sint, 2t) from (1, 0, 0) to $(1, 0, 4\pi)$.
 - (b) Find the surface integral $\iint F.ndA$, where F = [x z, y x, z y], $S: r = [u\cos v, u\sin v, u], 0 \le u \le 3, 0 \le v \le 2\pi$.
- 7. (a) Determine whether the line integral $\int 2xyz^2dx + \left(x^2z^2 + z\cos yz\right)dy + \left(2x^2yz + y\cos yz\right)dz \text{ is independent of the path of integration. If so, then evaluate it from (1, 0, 1) to (0, <math>\pi/2$, 1). 5
 - (b) Verify Stokes theorem for a vector field defined by $F = (x^2 y^2)I + 2xyj$ in the rectangular region in the xy-plane bounded by the lines x = 0, x = a, y = 0, y = b.
- 8. (a) Find the Fourier series expansion of $f(x) = \pi \sin \pi x$, $0 < x \le 1$.
 - (b) Find the Fourier cosine series expansion of f(x) = x , $0 < x < \pi$ and $f(x) = \pi x$, $\pi < x < 2\pi$.