Total Number of Pages: 03

B.TECH 15BE2101

1st Semester Regular Examination 2015-16 **BASIC ELECTRONICS**

BRANCH: ALL Time: 3 Hours Max Marks: 100 **Q.CODE: T845**

Answer Part-A which is compulsory and any four from Part-B.

	-	The figures in the right hand margin indicate marks.	-
01		Part – A (Answer all the questions)	(2 10)
Q1		Answer the following questions: multiple type or dash fill up type	(2×10)
	a)	When current amplification factor(α) is 0.98, the factor would be equivalent to	
		which value of transistor amplification factor β .	
		(i) 49 (ii) 60 (iii)20 (iv) 38	
	b)	An ideal op-amp operation amplifier has	
		(i)Infinite output impedance. (ii)Zero input impedance.	
		(iii)Infinite bandwidth. (iv)All of the above.	
	c)	Convert the decimal number 151.75 to binary	
		(i) 10000111.11 (ii) 11010011.01	
		(iii) 00111100.00 (iv) 10010111.11	
	d)	In a half wave rectification if the input frequency is 50 Hz, then the output has	
		frequency (i)12.5 Hz (ii) 25 Hz (iii) 100 Hz (iv) 50 Hz	
	e)	A BJT is said to be operated in saturation region if	
		(i) both the junction J_E and J_C are reverse biased.	
		(ii) both the junction J_E and J_C are forward biased.	
		(iii)J _E is forward biased	
	C	(iv) all are correct.	
	f)	If a square wave is fed to a integrating circuit then the output will be	
		(i) sine wave (ii) Rectangular wave (iii) Triangular wave (iv) Square wave.	
	g)	The piezoelectric effect in a crystal is	
		(i)a voltage developed because of mechanical stress.	
		(ii) change in resistance because of temperature.	
		(iii) change of frequency because of temperature.	
	1.	(iv) none	
	h)	$A+A'B=\underline{\qquad \qquad }$ (i) A (ii). A+B (iii). A' + B' (iv) B	
	• >		
	i)	A transistor converts	
		(i)DC power in to ac power. (ii)AC power in to dc power	
		(iii) High resistance in to low resistance. (iv) Low resistance in to high resistance	
	j)	A clamping circuit adds which component to the signal	
		(i) Dc (ii) AC (iii) both ac & dc (iv)None	
Q2		Answer the following questions: Short answer type	(2×10)
	a)	State De-Morgan's theorem.	
	b)	Write difference between combinational and sequential circuit.	
	c)	What is a Barkhausen criteria?	

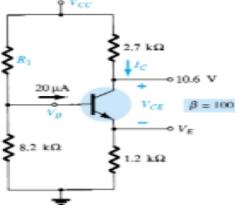
d) Write advantages of –ve feedback amplifier.

- e) Design OR gate using NAND gate only.
- f) The leakage current in Ge is 5μ A in 10° C. find its value when temperature is 25° C.
- **g)** Draw a voltage follower circuit using OP-AMP.
- h) Draw the input characteristics of common base (CB) configuration
- i) Find the value of radix R for which $(52)_R + (16)_R = (70)_R$
- **j**) Define the term h_{fe} , h_{ie} , h_{oe} and h_{re} of a transistor.

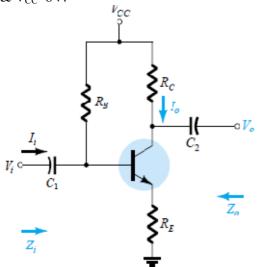
Part – B (Answer any four questions)

Q3 a) Define biasing. why biasing is required?

(3)

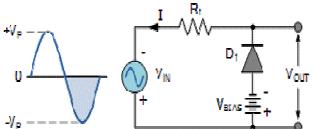

b) Convert the given expression in to canonical POS form Y=(A+B)(B+C)(A+C)

(4)

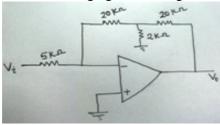

c) Calculate I_C , V_E , V_{CC} , V_{CE} , V_B & R_1

(8)

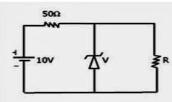
(7)



- Q4 a) A negative feedback of β =2.5X10⁻³ is applied to an amplifier of open loop gain 1000. Calculate the change in overall gain of the feedback amplifier if the open loop gain of the amplifier reduces by 20%.
 - **b)** Draw the approximate hybrid equivalent model of given circuit and determine Z_i , Z_o , A_v and A_i . Given $h_{fe}=120$, $h_{ie}=1.175K\Omega$, $h_{oe}=20\mu$ A/V , $R_B=330K\Omega$, $R_C=2.7$ K Ω & $V_{CC}=8$ V.



Q5 a) Derive an expression for I_{dc} and I_{rms} of center tap full wave rectifier circuit & find its maximum efficiency. (8)


b) Determine the expression of V_{out} for the following network and draw its output wave form, assume Si diode. (Given $V_p=16V \& V_{BIAS}=4V$)

- c) Distinguish intrinsic and extrinsic semiconductor. (2)
- Q6 a) Define CMRR and slew rate. (2)
 - **b)** An OP-AMP has a slew rate of 1 V/μ sec with a gain of 40 decibel. If this amplifier has to faithfully amplify sinusoidal signal from 0 to 20 KHz without any distortion what must be the maximum input signal level.
 - c) Explain the principle of crystal oscillator. (5)
- Q7 a) Write principle and working of CRO with proper block diagram (10)
 - b) Prove that ABC+ABC'+AB'C+A'BC=AB+AC+BC (5)
- Q8 a) Define virtual ground concept. (3)
 - b) Find the voltage gain of the given op-amp (7)

c) The 6v zener diode shown in fig below has zero zener resistance and a knee current of 5 mA passing through it. Find the minimum value of R so that voltage across it does not fall below 6 V. (5)

- Q9 Write short notes (any three): (5X3)
 - a) Full adder
 - b) R-S Flip-Flop
 - c) clamper circuit with example.
 - **d)** R-C phase shift oscillator.

(8)