Registration No.:					
registration no.					

Total number of printed pages - 2

B. Tech

PEEI 5405

NTRAL LIBR

Eighth Semester Regular Examination – 2015 MICRO-ELECTRO-MECHANICAL SYSTEMS BRANCH (S) : AEIE, BIOMED, EIE, IEE

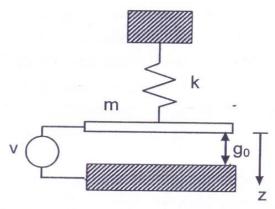
QUESTION CODE: J 170

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks:


Answer the following questions :

2×10

- (a) What are the parameters that significantly influence the rate of Chemical Vapor Deposition (CVD)?
- (b) List four advantages of polymer over silicon for MEMS device fabrication.
- (c) Name two methods of joining silicon to silicon.
- (d) State Castigliano's first theorem along with its mathematical expression.
- (e) What is Coriolis force? In which MEMS device is it used?
- (f) (i) "Gain of a MEMS RF Resonator Oscillator improves if it operates under partial vacuum". Please indicate whether this statement is TRUE or FALSE.
 - (ii) Please fill in the blank: Deflection of a loaded MEMS cantilever beam as beam thickness increases.
- (g) What are the relative merits of MEMS varactors over its semiconductor counterpart?
- (h) Will the gain of a MEMS RF Resonator Oscillator improve if it operates under partial vacuum? Explain your answer in brief.
- (i) What is a proof mass in the accelerometer?
- (j) What are the challenges and possible solutions in release etch and dry during processing and packaging of Microsystems?
- With the help of suitable diagram, explain the principles of the following fluid flow phenomena:
 - (a) Dielectrophoresis (DEP) and
 - (b) Electrowetting based fluid flow.

- 3. (a) Describe the working of a MEMS capacitive accelerometer sensor.
 - (b) A pressure sensor is to be fabricated on silicon by bulk micro-machining. Explain the process flow (with schematics showing cross-sectional view of the substrate at each stage)
- 4. In this problem you will calculate the deflection of a beam under its own weight. Assume that the beam is a rectangular solid with length 'L', width 'b', and thickness 'a'. Assume that it is made of a uniform isotropic material of density 'ρ', and Young's modulus 'E'.
 - (a) Calculate M(x), the bending moment as a function of position along the beam.
 - (b) Calculate y(x), the deflection as a function of position.
- (a) With the help of suitable schematic diagram explain the working principle of an MEMS gyroscope.
 - (b) What are the purpose of having wafer, structural material and sacrificial material in a typical MEMS fabrication?
- 6. (a) Show that on application of a voltage the position of the movable plate of a parallel plate capacitor connected with a spring as shown in the Figure below will become unstable when the gap between the movable and fixed plates reduces to two third of the gap at zero applied voltage.

 5

- (b) Describe the two modes of operation of a cantilever sensor. Give one example of application for each mode.
- 7. Discuss the importance of packaging in Microsystems. Compare and contrast with the general requirements for general integrated circuits.
- 8. Write short notes on any two of the following:
 - (a) LIGA
 - (b) Piezoresistive pressure sensor
 - (c) MEMS resonator
 - (d) Lab-on-a-chip.

5×2