- (a) If A = (a_{mn}) and B = (b_{mn}) are regular matrices and A⊇B. Then show that ||A||≥||B||.
 - (b) Show that a regular matrix $A = (a_{mn})$ limits a sequence in the unit ball $\{s_n^1\}$ such that $N(A) = A \lim s_n^1$.
- 9. (a) Let A be any bounded linear operator C_o into itself. Then show that A determines a matrix (a_{nk}) such that $(A_x)_n = \sum^a n_k^x$ for every $x \in C_o$ and such that $||A|| = \sup \sum |a_{nk}| < \infty$, $a_{nk} \to 0$ as $n \to \alpha$.
 - (b) Let $1 and suppose <math>A \in (l_{\infty}, l_{\infty}) \cap (l_1, l_1)$. Then show that $A \in (l_p, l_p)$.
- (a) State and prove Silverman Toeplitz Theorem.
 - (b) Let m and M be constants such that $0 < m \le p_k \le M$. Then show that (A, p) is strongly regular if and only if $A \in (C_0, C_0)$.

2013

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions.

(Matrix Transformations in Sequence Space)

- 1. (a) Show that:
 - (i) The Nörlund mean (N, p_n) is regular iff $\frac{p_n}{P_n} \to 0, \text{ as } n \to \infty.$
 - (ii) The Riesz mean (R, p_n) is regular iff $P_n \rightarrow \infty$, as $n \rightarrow \infty$.
 - (b) Define a limitation method and show that the limitation method defined by $t_n = \frac{s_1 + s_2 + \dots + s_n}{n}$ is regular.
- (a) Show that a matrix cannot be both regular and a Schur matrix.

BK - 63/3 (200)

(4) SPG — Math (10)

BK - 63/3

(Turn over)

- 3. (a) Show that, if (N, p_n) is a regular Nörlund method, then the series $\sum_{n=1}^{\infty} p_n x^{n-1}$ and $\sum_{n=1}^{\infty} P_n x^{n-1}$ are convergent for all |x| < 1.
 - (b) Prove that for every positive integer k, the(C, k) and (H, k) matrices are equivalent.
- 4. (a) If $\alpha > 0$, show that the transformation t_n represented by $t_n = \alpha s_n + (1 \alpha)$ $\frac{s_0 + s_1 + \dots + s_n}{n+1}$ is equivalent to convergence.
 - (b) Show that (C, k) method is a Hausdorff method corresponding to the function :

$$\phi(x) = k \int_0^x (1-t)^{k-1} dt$$

5. (a) Show that the sequence $\{s_n\}$ is almost convergent if and only if $P(s_n) = -P(-s_n)$.

(b) Show that the necessary and sufficient condition for a regular matrix $A = (a_{mn})$ to have a counting function of the first kind is $\lim_{m \to \infty} \max_{n} |a_{mn}| = 0$

- (a) Let A = (a_{mn}) and B = (b_{mn}) be regular triangular matrices. If A is a perfect matrix and O(A) ⊆ O(B), then show that B is astronger than A.
- (b) Show that no regular matrix limits all sequences of 0's and 1's.
- 7. (a) If A = (a_{mn}) and B = (b_{mn}) are regular matrices and A is μ_n -stronger than B, then show that A and B are ρ_n -consistent for some $\rho_{n\to\infty}(\rho_n\leq\mu_n)$.
 - (b) Define a truncated matrix (and show that for a regular matrix) A = (a_{mn}) there exists a sequence {ρ_n}, ρ_{n→∞} and a truncated matrix B = (b_{mn}) such that

$$\lim_{m \to \infty} \left(\sum_{n=1}^{\infty} a_{mn} s_n - \sum_{n=1}^{\infty} b_{mn} s_n \right) = 0 \text{ for }$$
every $\{s_n\}$, $s_n = O(\rho_n)$.

BK - 63/3

(2)

Contd.

BK - 63/3

(3)

(Turn over)