- 28. If (X, x_o) and (Y, y_o) are pointed spaces and $f: (X, x_0) \rightarrow (Y, y_0)$ is a homotopy equivalence. Then show that the induced map $f_*: \pi_1(X, x_0) \rightarrow$ π_1 (Y, y₀) is an isomorphism.
- 29. Show that for any oriented complex K and any p≥0, The composition

$$C_{p+1}(K) \to C_p(K) \to C_{p-1}(K)$$

is a trivial homomorphism.

30. Let K be an oriented complex and K its augmented complex. Then show that Hp(K) = $H_p(K)$ for all p > 0 and $H_o(K) = H_o(K) \oplus Z$.

and the first of the second section of the first of the f

2013

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions each from any two Groups as per your Course.

Group -A (Graph Theory)

1. Show that for any graph G with e edges and n vertices v₁, v₂, ..., v_n

$$\sum_{i=1}^{n} d(v_i) = \alpha e$$

Further show that in any graph G there is an even number of odd vertices.

2. Let G be a graph with n vertices $v_1, v_2, ..., v_n$ and Solet A denotes the adjacency matrix of G with respect to this listing of the vertices. Let $B = (b_{ii})$ be the matrix.

$$B = A + A^2 + \dots + A^{n-1}$$

BK - 59/4

(Turn over)

Then show that G is connected if and only if for every pair of distinct indices i, j we have $b_{ii} \neq 0$.

- 3. Show that a Tree with n vertices has precisely n-1edges.
- 4. Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
- 5. Show that a complete graph on five vertices is non-planar.
- 6. If G is a simple plannar graph then show that G has a vertex v of degree less than 6.
- 7. Show that for any graph G, $\chi(G) \leq \Delta(G) + 1$.
- 8. Find od(v) and id (v) for each vertex of the diagraph:

Let u and v two distinct vertices of the graph G.
 Then prove that a set S of vertices of G is u - v separating iff every u - v path has at least one internal vertex belonging to S.

BK - 59/4

(2)

Contd.

CENTRA

- (a) Subgraph
- (b) Bridge
- (c) Euler graph
- (d) Hamiltonian graph
- (e) Chromatic number

Group - B

(PROGRAMMING IN C)

- (a) Determine the hierarchy of operations and hence evaluate the expression 3/2 * 4+ 3/8+3.
 - (b) Convert the equation $X = \frac{-b + (b^*b) + 2/(4ac)}{2a}$ into the corresponding C statement.
- 12. Write a program using conditional operators to determine whether a year entered through the keyboard is a leap year or not.
- Explain, with example, the difference between
 While Loop and For Loop.
- 14. Write a program to find factorial value of any member entered through the keyboard.

BK - 59/4

(3)

(Turn over)

- Write a recursive function in C to obtain the first
 members of a Fibonacci sequence.
- 16. Write short notes on the following;
 - (a) Use of functions in C program
 - (b) Passing values between functions
- 17. Explain, with example, the following:
 - (a) Long and short integers
 - (b) Floats and doubles
 - (c) Signed and unsigned integers
- 18. If a macro is not getting expanded as per your expectation, explain how will you find out how is it being expanded by the preprocessor.
- (a) Using array write a program to find average marks obtained by a class of 30 students in a test.
 - (b) Write down a program to pick up the largest number from any 5 row by 5 column matrix.
- 20. The X and Y coordinates of 10 different points are entered through the keyboard. Write a program to find the distance of last point from the first point (sum of the distances between consecutive points).

BK - 59/4 (4)

Contd.

JBRARY

G.I.E.

CENTRE

Group - C

(ALGEBRAIC TOPOLOGY)

- Show that a retract of a space X is necessarily closed in X.
- 22. If s_p = {a₁, a₂, ..., a_p} ⊆ Rⁿ is geometrically independent then show that s̄_p is the closed convex hull of s.
- 23. Let K and L be geometric complexes and $f: |K| \rightarrow |L|$ a continuous map. Show that simplicial map $\phi: |K| \rightarrow |L|$ is a simplicial approximation to f iff for each $a \in K_{\vec{a}}$, $f(st(a)) \subseteq st(\phi(a))$.
- 24. Let K and L be geometric complexes; and $f: |K| \rightarrow |L|$ a continuous map and $\phi: |K^{(m)}| \rightarrow |L|$ and $\psi: |K^{(m)}| \rightarrow |L|$ two simplicial approximations to f. Then show that ϕ and ψ are contiguous.
- 25. Show that the following statements are equivalent:
 - (a) Sⁿ⁻¹ is not a retract of B^x.
 - (b) Bⁿ has the fixed point property.

BK - 59/4

(5)

(Turn over)