2014

Time: 4 hours

Full Marks: 100 CENTRA

The questions are of equal value.

Answer any five questions to neach Grou

Symbols used have their used presidings.

(LINEAR PROGRAMMING AND MEASURE AND INTEGRATION)

Group - A

Marks: 50

(Linear Programming)

 Define basic feasible solution of the Linear Programming Problem. Find all basic feasible solutions for the equations:

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$

$$6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$$

UN-63/3

(Turn over)

- If X = (x₁, x₂,, x_n) is an extreme point of K, then show that the vectors associated with positive x_i form a linearly independent set.
- Prove that if for any basic feasible solution X = (x₁₀,, x_{mo}). The condition q_i c_i to hold for all j = 1, 2,...., n, then it is minimum feasible solution of the LPP.
- Using Simplex Method :

$$Minimize x_2 - 3x_3 + 2x_5$$

Subject to the conditions:

$$x_1 + 3x_2 - x_3 + 2x_5 = 7$$

$$-2x_2 + 4x_3 + x_4 = 12$$

$$-4x_2 + 3x_3 + 8x_5 + x_6 = 10$$

$$x_j \ge 0$$
, for $j = 1, 2, 3, 4, 5, 6$

5. Maximize: $-2x_1 - x_2 + x_3 + x_4$

Subject to the conditions:

$$x_1 - x_2 + 2x_3 - x_4 = 2$$

$$2x_1 + x_2 - 3x_3 + x_4 = 6$$

$$x_1 + x_2 + x_3 + x_4 = 7$$

and $x_j \ge 0$, for j = 1, 2, 3, 4

UN-63/3

(2)

Contd.

6. Using revised simplex method

Minimize:
$$-x_1 + 2x_2$$

Subject to the conditions:

$$5x_1 - 2x_2 \le 3$$

$$x_1 + x_2 \ge 1$$

$$-3x_1 + x_2 \le 3$$

$$-3x_1 - 3x_2 \le 2$$

$$x_1 \ge 0$$
 and $x_2 \ge 0$

- State and prove complementary slackness theorem in duality.
- 8. Find the dual of the problem :

Minimize:
$$2x_1 - 3x_2$$

Subject to the conditions:

$$2x_1 - x_2 - x_3 \ge 3$$

$$x_1 - x_2 + x_3 \ge 2$$

$$x_j \ge 0$$
, for $j = 1, 2, 3$.

- What do you mean by a transportation problem?
 Write the transportation problem in standard firm and show that it has a feasible solution.
- 10. Solve the transportation problem:

(N) 14	87 1 3	2	3	4	6	
(3)	4	3	2	0	8	
2	0	2	2	1	10	
SHIKE US	Sel	6	8	6		
)0	Group – B Marks: 50				
(E)	Measure and Integration					

11. Let {A_n} be a countable collection of sets of real numbers. Then show that :

$$m^* (UA_n) \le \sum m^*A_n$$

- 12. Construct a non-measurable set.
- 13. Define a measurable function and show that if < f_n> is a sequence of measurable functions with the same domain, then <u>lim</u>f_n and <u>lim</u>f_x are also measurable.

UN-63/3 (4)

Contd.

- 14. If < f_n> is a sequence of measurable functions (with the same domain) that converges to a realvalued function f a.e on a measurable set E of finite measure, then show that for a given η > 0 there is a subset A ⊂ E with m A < η such that f_n converges to f uniformly on E - A.
- 15. State and prove Lebesque convergence theorem.
- 16. Let f be a bounded function defined on both by bl. If f is Riemann integrable or [a, b]. Then show that the measurable and also Lebesque integrable.
- 17. Define a function of bounded variation and show that a function f is of bounded variation on [a, b] if and only if f is the difference of two monotone real valued functions on [a, b].
- 18. Show that if f is absolutely continuous and f'(x) = 0 a.e., then f is constant.
- State and prove Minkowski Inequality.
- Show that every convergent sequence is a Cauchy sequence.

UN-63/3 (300)

(5)

FPG -- Math (1)