with h = 0.2 on the interval [0, 0.4], using Euler -

GUN

Cauchy method.

20. Write short notes on:

(i) Runge - Kutta Method

(ii) Interpolation

2014

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions from each Group

Symbols used have their usual meanings.

(GENERAL TOPOLOGY AND NUMERICAL ANALYSIS)

Group - A

Marks: 50

(GENERAL TOPOLOGY)

1. Show that J* is a topology for X*.

Show that if F is a closed set then CF is an open set and conversely if CF is an open set then F is a closed set.

UN-67/3

(Tum over)

UN - 67/3 (300)

(6) FPG — Math (5)

3. Define finite intersection property and show that a topological space (X, J) is compact if and only if any family of closed sets having the finite intersection property has a non-empty intersection.

4. Show that :

- (a) If C is a connected set and $C \subseteq E \subseteq c$ (C), then E is connected $C \subseteq E \subseteq c$
- (b) If every two points of a set E are contained in some connected subset of E, then E is a connected set.
- 5. Show that every compact subset E of a Hausdorff space X is closed.
- 6. Prove that in a second axiom space every collection of non-empty disjoint open sets are countable.
- 7. Show that a topological space X is completely normal if and only if every subspace of X is normal.

UN-67/3 (2) Contd.

- 8. Show that normality is a topological property.
- Show that X × Y is compact if and only if Rand X are compact.
- 10. Prove that the projections π_{y} and π_{y} are continuous and open mappings and so the product topology is the smallest topology for which the projections are continuous.

Group - B

Marks: 50

(NUMERICAL ANALYSIS)

11 For the data:

X	f(x)
0	1
1	2
2	33
3	244

fit a quadratic splines with M(0) = f''(0) = 0 Hence find an estimate of f(2.5).

UN-67/3

(3)

(Turn over)

12. For the data:

x f(x) 0.1 1.40 0.2 1.56

0.3 1.76

0.4 2.00

0.5 2.28

Obtain the forward and backward difference polynomials.

ENTRAL LIB

13. Use the method of least squares to fit the curve $f(x) = C_0 x + (C_1/\sqrt{x})$ for the data :

x f(x) 0.2 16 0.3 14

0.5 11

1 6

2 3

Find also the least squares error.

UN-67/3

(4)

Contd.

- Using Chebyshev polynomials, find nearly the best uniform approximation of degree 3 or less to
- 15. Derive the formula for the first derivative of y = f(x) of $O(h^2)$ using central difference of $O(h^2)$ using central difference of $O(h^2)$ using central difference of $O(h^2)$.
- 16. Evaluate $\int_{0}^{\infty} \frac{e^{-x}}{1+x^2} dx$ using Gauss-Leguerre

two-point and three point formulas

17. Find the approximate value of the integral

$$\int_{0}^{1} \frac{dx}{1+x} \text{ using composite trapezoidal rule with 2,}$$

- 3, 5, 9 nodes Romberg integration.
- 18. Solve the difference equation

$$\Delta^2 y_n + 3\Delta y_n - 4y_n = n^2$$

With the initial conditions $y_0 = 0$, $y_2 = 2$.

19. Solve the system of equations

$$u' = -3u + 2v$$
, $u(o) = 0$

$$v' = 3u = 4v, v(0) = 0.5$$

∍07/3 €

(5)

(Turn over)