20/ (a) Find the Laplace transform of the function f(t) $= e^{at} \sqrt{t}, a > 0.$

(b) Find the inverse Laplace transform of

So = Daw.

+ 2

Ung

2014

Time: 4 hours

Full Marks : 100CENTRA

The questions are of equal value.

Answer any five questions from each Group

Symbols used have their usual meanings

(ADVANCED CALCULUS AND PARTIAL DIFFERENTIAL EQUATION)

Group - A

Marks: 50

(ADVANCED CALCULUS)

Let $f \in C'$ in an open ball B (p_0, r) about the point p_0 in n-space. Let $p \in B$ and set

$$p - p_0 = \Delta p = (\Delta x_1, \Delta x_2, ..., \Delta x_n).$$

Then, show that there are points

 $p_1, p_2,, p_n$ in B such that

UN-64/3

(Tum over)

$$f(p) - f(p_0) = f_1(p_1) \Delta x_1 + f_2(p_2) \Delta x_2 + \dots + f_n(p_n) \Delta x_n$$

2. Transform the differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 into polar coordinates by

the substitution \$\frac{\pmoderate}{\text{cos θ}} \sin θ.

- 3. Show that for any $p \in S$ and any $u \in R^3$, dg/(u) = pDg (p). u.
- 4. Let T be a transformation of class C' on an open set D in n-space and let E be a compact set in D. Then there are numbers M and δ > 0 such that |T(p) T(q)| ≤ M |p q| for all p and q in E with |p q| < δ. If E is convex, then δ = dia m (E).</p>
- 5. Let T be a transformation from R³ into R³ described by

$$u = f(x, y, z)$$
$$v = g(x, y, z)$$
$$w = h(x, y, z)$$

UN-64/3 (2)

Contd.

which is of class C' in an open set D and suppose that at each point $p \in D$ the differential dT has rank 2. Then show that T maps D onto a surface in UVW space and the functions f, g and h are functionally dependent in D.

- 6. Let D be the region in the first quadrant which is bounded by the curves xy = 1, xy = 3, $x^2 y^2 = 1$ $x^2 y^2 = 4$. Make an appropriate substitution and evaluate $\iint_0 (x^2 + y^2) dx dy$.
- 7. Define smoothly equivalent and show that if γ_1 and γ_2 are smoothly equivalent curves, then $L(\gamma_1) = L(\gamma_2)$.
- 8. Find the area of the portion of the upper hemisphere of the sphere with centre (0, 0, 0) and radius R that obeys $x^2 + y^2 Ry \le 0$.
- If w is a differential form of class C', then show that T*(dw) = d(w)* = d(w*) = d T*(w).
- 10. State and prove Green's theorem.

UN - 64/3

(3)

(Turn over)

Group -B

Marks: 50

(PARTIAL DIFFERENTIAL EQUATION

- Find the general solution of $u_{xy} + u_x = 0$ by setting $u_x = v$.
- 12. Obtain the general solution of

$$3u_{xx} + 10u_{xy} + 3u_{yy} = 0.$$

13. Determine the solution of

$$u_{xx} - u_{yy} = 1$$
;

$$u(x, 0) = \sin x$$
;

$$u_{v}(x, 0) = x.$$

 Determine the eigenvalues and eigenfunctions of Sturm-Liouville system

$$u'' + \lambda u = 0$$
; $0 \le x \le \pi$

$$u(0) = 0$$
; $u'(\pi) = 0$.

15. Show that the eigenfunctions of a periodic Sturm
Liouville system in [a, b] are orthogonal with respect to the weight functions in [a, b].

UN-64/3

(4)

Contd.

16. Show that the Green's function for the boundary value problem is symmetric.

17. (a) Find the Fourier sine transforms of flat

- (b) If F (f) is the Fourier transform of a function f, then show that F (f (t c)) is elac for the first a real constant.
- 18. Using Fourier transform obtain the solution of the initial value problem of heat conduction in an infinite rod :

$$u_t - u_{xx} = 0, -\infty < x < \infty, t > 0$$

$$u(x, 0) = f(x), -\infty < x < \infty$$

u (x, t) is bounded

19 Define convolution in Laplace transfrom and show that :

(i)
$$f * g = g * f$$

(ii)
$$f * (g * h) = (f * g) * h$$

UN - 64/3

(5)

(Turn over)