tem (n)	Item (w _n)	Item (v _r
1	2	7
2	3	10
3	1	3

Find the most valuable cargo load without exceeding the maximum cargo weight by using dynamic programming.

2015

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any **five** questions.

Symbols used have their usual meanings.

(OPERATIONS RESEARCH)

 Solve the following mixed integer programming problem:

Maximize
$$Z = 4x_1 + 6x_2 + 2x_3$$

Subject to $4x_1 - 4x_2 \le 5$
 $-x_1 + 6x_2 \le 5$
 $-x_1 + x_2 + x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$: x_1 and x_3 are

integers.

State and prove Kuhn-Tucker necessary and sufficient conditions in a non-linear programming problem.

SPG — Math (8)

3. Minimize
$$f(x) = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$$

Subject to: $x_1 + x_2 + x_3 = 15$
 $2x_1 - x_2 + 2x_3 = 20$;
 $x_1, x_2, x_3 \ge 0$

associated with Lagranges method.

4. Verify whether the following function in convex or concave and find the maximum or minimum solution point:

$$f(x) = 4x_1^2 + 3x_2^2 + x_3^2 - 6x_1x_1 + x_1x_3 - \frac{x_1}{2} - 2x_1 + 15$$

(a) Solve the following 2×3 game graphically:

Player B 1 3 11 Player A 8 5 2

(b) Use dominance property to reduce the following game to 2×2 game and hence find the optimal strategies and the value of the game:

PR - 26/3

Slove the following quadratic programming problem by using Beale's method:

Maximize
$$Z = 2x_1 + 3x_2 - x_1^2$$

Subject to: $x_1 + 2x_2 \le 4$
and $x_1, x_2 \ge 0$

- Explain Lemke's complementary pivoting algorithm for solving linear complementarity problem.
- Use Frank-Wolfe method to solve the following non-linear programming problem (NPP):

Maximize
$$f(x) = 2x_1 + x_2 - x_1^2$$

Subject to: $2x_1 + 3x_2 \le 6$
 $2x_1 + x_2 \le 4$
 $x_1, x_2, \ge 0$

Using geometric programming, solve the following problem.

Minimize
$$Z = c_1x_1x_2x_3 + c_2x_1x_2^{-1} + c_3x_2x_3^{-2} + c_4x_1^{-3}x_2$$

Where
$$c_j > 0$$
, $x_i > 0$; $j = 1, 2, 3, 4$ and $i = 1, 2, 3$.

 A ship is to be loaded with stock of 3 items. Each unit of item 'n' has a weight w_n and value v_n. The

$$PR-26/3$$
 (3) (Tum over)