2015

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any **five** questions from each Group. Symbols used have their usual meanings.

(LINEAR PROGRAMMING AND MEASURE AND INTEGRATION)

Group - A

(Full Marks: 50)

(LINEAR PROGRAMMING)

- Define the following terms :
 - (a) Basic feasible solution
 - (b) Slack and surplus variables
 - (c) Degenerate basic solution
 - (d) Objective function
- Prove that any convex combination of K different optimum solutions to an LPP is again an optimum solution to the problem.

RK-1/5

(Turn over)

Obtain all the basic solutions to the following system of linear equations:

$$x_1 + 2x_2 + x_3 = 4$$

 $2x_1 + x_2 + 5x_3 = 5$

 Using simplex method to solve the following LPP:

$$\begin{aligned} \text{Max}: Z &= x_1 + 2x_2 \\ \text{Subject to}: &- x_1 + 2x_2 \leq 8 \\ & x_1 + 2x_2 \leq 12 \\ & x_1 - 2x_2 \leq 3 \\ \text{and} & x_j \geq 0 \text{, for } j = 1, 2 \end{aligned}$$

Using Penalty on Big-m method to solve the following LPP:

Minimize:
$$Z = 2x_1 + x_2$$

Subject to: $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
and $x_j \ge 0$, for $j = 1, 2$

RK - 1/5 (2) Contd.

Using revised simplex method to solve the following LPP:

Min:
$$Z = x_1 + x_2$$

Subject to: $x_1 + 2x_2 \ge 7$
 $4x_1 + x_2 \ge 6$
and $x_i \ge 0$, for $j = 1, 2$

7. Find the dual of the problem:

$$\begin{aligned} \text{Max}: & Z = x_1 - x_2 + 3x_3 \\ \text{Subject to}: & x_1 + x_2 + x_3 \leq 10 \\ & 2x_1 - x_3 \leq 2 \\ & 2x_1 - 2x_2 + 3x_3 \leq 6 \\ & \text{and} & x_j \geq 0 \text{, for } j = 1, 2, 3 \end{aligned}$$

- If for feasible solution X_o, W_o to the primal and dual respectively and cX_o = W_o b, then X_o is an optimal solution to the primal and W_o is optimal to the dual.
- 9. A necessary and sufficient condition for the existence of a feasible solution to a transportation problem is that $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$, where a_i is the quantity of commodity available at origin i, and b_i

$$RK - 1/5$$
 (3) (Turn over)

is the quantity of commodity needed at destination j.

Solve the transportation problem :

Demand 200 225 275 250

Group - B

(Full Marks: 50)

(MEASURE AND INTEGRATION)

- Prove that the union of two measurable sets is measurable.
- Let E ⊂ (0, 1) be a measurable set. Then for each y ∈ (0, 1) the set E + y is measurable and m(E + y) = mE.
- If f is a measurable function and f = g a.e., then g is measurable.
- Show that every Borel set is measurable.
- 15. Let $\langle f_n \rangle$ be an increasing sequence of non-

RK - 1/5

(4)

Contd.

negative measurable functions, and let $f = \lim_{n \to \infty} f_n$ a.e. Then prove that $\int f = \lim_{n \to \infty} \int f_n$

- 16. If f is integrable on [a, b], the function F defined by
 F(x) = ∫_a^x f(t) dt is a continuous functions of bounded variation on [a, b].
- A function f is of bounded variation on [a, b] if and only if f is the difference of two monotone real valued functions on [a, b].
- State and prove Holder Inequality.
- 19. Prove that ℓ^p is complete, for $1 \le p < \infty$.

