$||\phi_n|| \le \alpha$, $\forall n \ge 1$, where Y is a Banach space. If $<\phi_n(x)>$ converges for every $x \in E$, then for some $\phi \in BL(X, Y)$, $\phi_n(x) \rightarrow \phi(x)$ for all $x \in X$.

- (a) If T is a normal operator on Hilbert space H, then ||T²|| = ||T||².
 - (b) Let U be a linear operator on a Hilbert spaceV. Then the following are equivalent.
 - (i) $U^* = U^{-1}$.
 - (ii) $UU^* = U^*U = I$
 - (iii) <U (u), U(v)> = <u, v> \forall u, v \in V
 - (iv) $||U(u)|| = ||u|| \forall u \in V$

2015

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions.

Symbols used have their usual meanings.

(FUNCTIONAL ANALYSIS)

- (a) Prove that every linear map from a finite dimensional normed linear space to any normed linear space in continuous.
 - (b) Let $\phi: \mathbb{R}^2 \to \mathbb{R}^2$. For $x = (x_1, x_2) \in \mathbb{R}^2$, let $||x|| = (|x_1|^2 + |x_2|^2)^2$ and define $\phi(x) = (x_1 \cos\theta x_2 \sin\theta, x_1 \sin\theta + x_2 \cos\theta)$ Check whether:
 - (i) \$\phi\$ in Linear?
 - (ii) φ in bounded?

Find || \phi ||.

- (a) Let X in a normed linear space over k(ℝ | ⊄), Y in a subspace of X. If g ∈ y', then ∃ f∈ X'such that f / y = g and ||g|| = ||f||.
 - (b) Let X₁, X₂.....X_n be normed space, and X = X₁ × X₂ × ······ × X_n. Then X is a Banach space iff each X_k, k = 1,2 ····· n is a Banach space.
- (a) If E is a totally bounded subset of X, then prove that the sequence <φ_n(x)> converges to φ(x) unifomly.
 - (b) Let X, Y are Banach space. Suppose φ: X →Y in a linear continuous map and φ is also onto. Then prove that φ is an open map.
- 4. (a) Let $X = \ell^p \ (1 with <math>||x|| = \left\{ \sum |x_p|^p \right\}^{\frac{1}{p}}$.

 Define $A : X \to X$ by $A \ (x_1, x_2,) = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \right)$. Then show that $A \in BL(X)$
 - (b) Prove that the eigen vectors corresponding to distinct eigen values are linearly dependent.

Contd.

- 5. Show that the dual of \mathbb{R}^n is isometrically isomorphic to \mathbb{R}^n .
- (a) Show that a finite dimensional normed linear space convergence (strong) and weak convergence are equivalent.
 - (b) Prove that every finite dimensional normed linear space is reflexive.
- Let X: Hilbert space and {u_n: n ≥ 1} be a countable orthonormal set in X.

For a sequence of scalars <k_n> belongs to k, the following results are equivalent:

- (a) $\exists x \in X \text{ s.t. } \langle x, u_n \rangle = k_n \forall n$
- (b) $\Sigma |k_n|^2 < \infty$
- (c) $\sum_{n=1}^{\infty} k_n u_n$ converges in X.
- 8. State and prove Riesz representation theorem.
- (a) A linear operator on R² is defined by T(x, y) = (x + 2y, x y). Find the adjoint. If α=(1, 3), find T*(α).
 - (b) Let E is a subset of X such that span (E) is dense in X. Suppose φ_n ∈ BL(X, Y) such that

PR - 25/4

(3)

(Turn over)