Show that $\max_{|z|=r} |f(z)| \le \text{the maximum}$ modulus of g and minimum modulus of f is \ge the minimum modulus of g.

- (a) Prove that the zeros a₁,, a_n and poles b₁,, b_n of an elliptic function satisfy a₁ + + a_n = b₁ + + b_n (mod M).
 - (b) What is unimodular transformation? Show that any two bases of the same module are connected by a unimodular transformation.
- 10. (a) Show that any even elliptic function with periods w_1 , w_2 can be expressed in the form $C \prod_{n=1}^n \frac{\gamma(z) \gamma(a_k)}{\gamma(z) \gamma(b_k)} \ (C = const) \ provided$ that 0 is neither a zero nor a pole. The symbol γ stands for Weierstrass Pe function.
 - (b) Explain what do you mean by a modular function. How conformal mapping is effected by this function?

2015

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions.

Symbols used have their usual meanings.

(COMPLEX ANALYSIS)

- 1. (a) Solve the quadratic equation : $z^{2} + (\alpha + i\beta)z + v + i\delta = 0.$
 - (b) Simplify $\sin \phi + \sin 2\phi + \cdots + \sin n\phi$ and $1 + \cos \phi + \cos 2\phi + \cdots + \cos n\phi$.
- 2. (a) Develop $\frac{1}{z(z+1)^2(z+2)^3}$ in partial fractions.
 - (b) State and prove Cauchy's necessary and sufficient condition of uniform convergence.

FPG — Math (4)

- 3. (a) Give a precise definition of a single valued branch of $\sqrt{1+z} + \sqrt{1-z}$ in a suitable region and prove that it is analytic.
 - (b) If z_1 , z_2 , z_3 , z_4 are distinct points in the extended plane and T any linear transformation, then $(T_{z_1}, T_{z_2}, T_{z_3}, T_{z_4}) = (z_1, z_2, z_3, z_4)$.
- 4. (a) The line integral $\int pdx + qdy$, defined in Ω , r depends only on the end points of γ if and only if there exists a function U(x, y) in Ω with the partial derivatives $\frac{\delta u}{\delta x} = p$, $\frac{\delta u}{\delta y} = q$. Prove this.
 - (b) If f(z) is analytic and $Im f(z) \ge 0$ for Im z > 0, show that $\frac{\left|f(z) f(z_0)\right|}{\left|f(z) f(z_0)\right|} \le \frac{\left|z z_0\right|}{\left|z z_0\right|}.$
- 5. (a) Define locally exact differentials. If pdx + qdy is locally exact in Ω , then prove that $\int pdx + r$ $qdy = 0 \text{ for every cycle } \gamma \sim 0 \text{ in } \Omega.$

- (b) Define simple connected region. Prove that the region obtained from a simply connected region by removing m points has the connectivity m + 1 and find a homology basis.
- 6. (a) Find out poles and residues of the functions $\frac{1}{z^2 + 5z + 6}$ and cot z.
 - (b) State and prove Rouche's theorem.
- (a) The Legendre polynomials are defined as the coefficients P_n(α) in the development (1-2αz+z²)^{-½}=1+P₁(α)z+P₂(α)z²+....... Find P₁, P₂, P₃ and P₄.
 - (b) Express $\sum_{-\infty}^{\infty} \frac{1}{z^3 n^3}$ in closed form.
- 8. (a) Show that the function $\zeta(s) = \frac{1}{2}s (1-s)\pi^{-s/2}$ $\Gamma(s/2) \zeta(s)$ is entire and satisfies $\zeta(s) = \zeta(1-s)$.
 - (b) Compare $f(z) = z^m \prod_{n} \left(1 \frac{z}{a_n}\right)$ having genus zero with $g(z) = z^m \prod_{n} \left(1 \frac{z}{|a_n|}\right)$.

Contd.