15. Solve the following boundary value problem using the appropriate Green's function:

$$u'' = t$$
; $u(0) + u(1) = 0$, $u'(0) + u'(1) = 0$.

 Determine the eigenvalues and eigenfunctions of Sturm-Liouville system :

$$u'' + \lambda u = 0$$
; $0 \le x \le \pi$, $u(0) = u(\pi) = 0$.

- 17. Using Fourier transform to solve $u_t u_{xx} = 0$; u(0, t) = 0, u(y, t) = 0, u(x, 0) = 2x, where 0 < x < 4, t > 0.
- 18. (a) Find the Fourier transform of:

$$f(x) = \begin{cases} x, |x| \le a \\ 0, |x| > a \end{cases}$$

- (b) Establish the relationship between Fourier transform and Laplace transform.
- 19. (a) Find L $\left\{\frac{\sin at}{t}\right\}$.
 - (b) Using Laplace transform to solve: $y'' + 6y' + 5y = e^{-t}$; y(0) = 0, y'(0) = 1.
- 20. (a) Evaluate L{(cos2t cos3t)/t}.
 - (b) Evaluate $L^{-1} \left\{ \frac{2s+1}{(s+2)^2 (s-1)^2} \right\}$.

PR - 2/4 (200) (4) FPG -- Math (2)

2015

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions from each Group.

Symbols used have their usual meanings.

Group - A

(Marks: 50)

(ADVANCED CALCULUS)

- If all the first partial derivatives of f exist and are continuous in an open set D, then f itself is continuous in D.
- 2. Let F(x, y, z) = 0, then prove that:

$$\left[\frac{\delta z}{\delta y}\right]_{x=const.} \left[\frac{\delta y}{\delta x}\right]_{z=const.} \left[\frac{\delta x}{\delta z}\right]_{x=const.} = -1.$$

3. Let L be a linear transformation from Rⁿ to R^m

PR – 2/4

(Turn over)

represented by the matrix (ais). Then there is a constant B such that $|L(p)| \le B|p|$ for all points p.

4. Let S and T be given by:

S:
$$\begin{cases} u = f(x, y, z) \\ v = g(x, y, z) \end{cases} T : \begin{cases} x = F(s, t) \\ y = G(s, t) \\ z = H(s, t) \end{cases}$$

Show that d(ST) = dS dT.

5. Let T(x, y) = (u, v), then show that:

$$\frac{\delta(u, v)}{\delta(x, y)} \cdot \frac{\delta(x, y)}{\delta(u, v)} = 1.$$

PR - 2/4

- 6. Let F be a function of three variables which is of class C' in an open set D and let p₀ = (x₀, y₀, z₀) be a point of D for which F(p₀) = 0. Suppose that F₃(P₀) ≠ 0. Then, there is a function φ of class C' in a nbd N of (x₀, y₀) such that z = φ(x, y) is a solution of F(x, y, z) = 0, for (x, y) ∈ N and such that φ(x₀, y₀) = z₀.
- 7. Define smoothly equivalent and show that if γ_1 and γ^2 are smoothly equivalent curves, then $L(\gamma_1) = L(\gamma_2)$.

(2)

Contd.

- 8. Let ∑ be a smooth surface and p be a point lying on ∑. Then the normal to ∑ at p is orthogonal to any smooth curve which lies on ∑ and passes through p.
- 9. If Σ_1 and Σ_2 are smoothly equivalent surfaces and w is a continuous 2 form defined on their trace. Then $\iint w = \iint w$. $\Sigma_1 \qquad \Sigma_2$
- Verify Green's theorem for w = xdx + yxdy with D
 as the unit square with opposite vertices at
 (0, 0) and (1, 1).

(Marks: 50)

(PARTIAL DIFFERENTIAL EQUATIONS)

- 11. Find the general solution of the equation $3u_x + 2u_y = 0$.
- 12. Solve: $u_x = 2u_t + u_t$, where $u(x, 0) = 6e^{-3x}$.
- 13. Obtain the general solution of $u_{xx} + u_{xy} u_{yy} = 0$.
- 14. Determine the solution of :

$$u_{xx} - u_{yy} = 1,$$

$$u(x, 0) = \sin x$$

$$u_{y}(x, 0) = x$$

$$PR - 2/4$$
 (3) (Turn over)