(a) A Banach space can't have a denumerable basis.

OR

- (b) (i) Let X and Y be normed spaces and X ≠ {0}. Then BL(X, Y) is a Banach space in the operator norm iff Y is Banach space.
 - (ii) Prove that the dual X' of every normed space X is a Banach space.
- (a) State and prove that bounded inverse theorem.

OR

- (b) State the closed graph theorem.
- 6. (a) Let x be a normed space and $A \in BL(x)$ be a finite rank. Then prove that $\sigma_e(A) = \sigma_e(A) = \sigma(A)$.

OR

- (b) Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then prove
 - that the following:
 - (i) The dual of Kⁿ with the norm || ||_p is linearly isometric to Kⁿ with the norm || ||q.
 - (ii) The dual of C_{∞} with the norm $\| \|_p$ is linearly isometric to l^q .
 - (iii) The dual of C_0 with the norm $\| \|_{\infty}$ is linearly isometric to l'.

2016

FUNCTIONAL ANALYSIS-I

Time: Three Hours]

[Maximum Marks: 80

The figures in the right hand margin indicate marks.

Answer from both the Sections as directed.

SECTION-A

- 1. Answer any four of the following:
- 4×4
- (a) Let X be a normed space such that \(\overline{U}(0,1)\) is totally bounded. Then show that X is finite dimensional.
- (b) Let X and Y be normed spaces and F: X → Y be a linear map. Prove that the following conditions are equivalent:
 - (i) F is bounded on $\overline{U}(0,r)$ for some r > 0
 - (ii) F is continuous at 0
 - (iii) F is continuous on X
- (c) Let X be a linear space over K and Y be a subspace of X which is not a hyperspace in X. If x₁ and x₂ are in X but not in Y, then there is some x in X such that for all t∈ [0,1], tx₁ + (1-t) x ∉ Y and tx₂ + (1-t) x ∉ Y. If X is a normal space, then Y is connected. Justify.

- (d) A normed space X is a Banach space iff every absolutely summable series of elements in X is summable in X. Justify.
- (e) State and prove the Resonance theorem.
- (f) Let X be a Banach space, $A \in BL(X)$ and $||A^p|| < 1$ for some positive integer p. Then prove that the bounded operator I A is invertible. Also,

$$(I-A)^{-1} = \sum A^n \text{ and } \| (I-A)^{-1} \|$$

$$\leq \frac{1 + \|A\| + \dots + \|A^{p-1}\|}{1 - \|A^p\|}$$

2×8

(Continued)

OR

- 2. Answer all questions from the following:
 - (a) Definite Jenson's inequality.
 - (b) Define operator norm.
 - (c) Let X be a linear space over c. A real value linear functional $u: X \to \mathbb{R}$. Define f(x) = u(x) iu(ix), $x \in X$. Then show that f is a complex-linear functional on X.
 - (d) Let X be a normed space over K, $j \in X'$ and $f \neq 0$. Let $a \in X$ with f(a) = 1 and r > 0. Then

$$\bigcup (a,r) \cap z(f) = \phi \text{ iff } ||f|| \le \frac{1}{r}$$

Justify.

(e) Let X and Y be normed spaces and F: X→Y be linear. Then prove that F is continuous ⇔ g∘f is continuous for every g∈Y¹. (f) If Z is a closed subspace of normed space X, then quotient map Q from X to $\frac{X}{Z}$ is continuous and open. Prove it.

(3)

- (g) Prove that the set of all invertible operators is open in BL(X) and the map $A \rightarrow A^{-1}$ is continuous on this set.
- (h) State Resonance Theorem's converse part.

SECTION-B

Answer all questions:

16×4

- 3. Let X be a normed space. Then show that
 - (a) If E₁ is open in X and E₂⊂X, then E₁+E₂ is open in X.
 - (b) Let E be a convex subset of X. Then the interior E⁰ of E and the closure Ē of E are also convex. If E⁰ ≠ φ, then Ē = Ē₀.
 - (c) Let Y be a subspace of X. Then $Y^0 \neq \phi$ iff Y = X.

OR

- (a) Let X be a normed space and f be a non-zero linear functional on X. Then f is discontinuous iff z (f) is dense in X. Prove it.
- (b) Let X and Y be normed spaces and F: X→ Y be linear. Then F is continuous iff for every Cauchy sequence ⟨x_n⟩ in X, the sequence ⟨Fx_n⟩ is Cauchy in Y.

BAM 47 (4)