(b) A necessary and sufficient condition that a linear operator T on a complex Hilbert space V (Unitary Space) be self-adjoint (or Hermitian) is that ⟨T(α), α⟩ be real for every α.

2016

Time: 4 hours

Full Marks: 100

The questions are of equal value.

Answer any five questions.

Symbols used have their usual meanings.

(FUNCTIONAL ANALYSIS)

- (a) Let X and Y are linearly homeomorphic. X is complete iff Y is complete.
 - (b) Let $\phi: \ell^{\infty} \to \ell^{\infty}$ defined by $x = (x_n) \to \left(\frac{x_n}{n}\right)$. Then ϕ is linear, bounded. Find $||\phi||$.
- (a) Prove that a Banach space cann't have a denumerable basis.
 - (b)Let $X = \mathbb{R}^2$ with the suprimum norm. Consider the subspace $Y = \langle (x_1, x_2) \in X : x_1 = x_2 \rangle, g : Y$ $\rightarrow \mathbb{R}$ by $g(x_1, x_2) = x_1$. Define $f_1 : X \rightarrow \mathbb{R}$ by

 $f_1(x_1, x_2) = x_1$ and $f_2 : X \rightarrow R$ by $f_2(x_1, x_2) = x_2$. Show that f_1 and f_2 are Hahn-Banach extension to X.

- (a) Let X and Y are Banach Space. Then prove that X × Y a Banach space.
 - (b) Let X and Y are Banach Spaces. φ : X → Y is a linear map then G(φ) is closed iff φ is continuous.
- - BL(X) is the set of the all bounded linear functional on X to X.
 - (b) Prove that the eigen vectors corresponding to distinct eigen values are linearly dependent.
- 5. Show that $(\underline{p})' \cong (\underline{q})$ where $\frac{1}{p} + \frac{1}{q} = 1 \ (1 \le p < \infty)$.
- (a) If X is reflexive, then weak convergence iff weak * convergence.
 - (b) Prove that every finite dimensional normed linear space is reflexive.

- (a) State and prove Gram-Schmidt orthonormalization process.
 - (b) Prove that a normed linear space is an inner product space if parallelogram law is true.
- (a) Let F is a non-empty closed subspace of a
 Hilbert space X. For x ∈ X, ∃ a unique y ∈ F
 such that || x y || = inf_{z∈f} || x z ||.
 - (b) Let X be a Hilbert space and F be a nonempty closed subspace of X. Then prove that X = F ⊕ F¹.
- (a) A linear operator on IR² is defined by T(x, y) = (x + 2y, x y). Find the adjoint. If α = (1, 3), find T * (α).
 - (b) Let E is a subset of X such that span(E) is dense in X. Suppose φ_n ∈ BL(X, Y) such that || φ_n || ≤ α, ∀ n ≥ 1, where Y in a Banach space. If <φ_n(x)> converges for every x ∈ E, then for some φ ∈ BL(x, y), φ_n(x) → φ(x) for all x ∈ X.
- 10. (a) Let T be a linear operator on a complex Hilbert space V. Then T is normal ⇔ || T *(u) || = || T (u) || ∀ u ∈ V.

HX - 16/3 (3) (Turn over)