multiplication are defined component wise. Prove that V is a vector space over IR.

- 6. (a) (i) Show that the two extension fields $Q\left(\sqrt{2}+\sqrt{3}\right) \text{ and } Q\left(\sqrt{2},\sqrt{3}\right) \text{ over } Q$ are same.
 - (ii) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.

OR

- (b) (i) Find the splitting field of the polynomial $x^5 2$ over Q.
 - (ii) If the field F is of characteristic 0 and if a, b are algebraic over F, then prove that there exists an element c∈F (a, b) such that F(a, b) = F(c).

2016 (January)

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as directed.

The symbols used have their usual meanings.

(ALGEBRA - I)

Section - A

- 1. Answer any four of the following: $4\times4 = 16$
 - (a) For g in a group G, define T_g: G→G by xT_g = g⁻¹xg, for x∈G. Prove that T_g is an automorphism.
 - (b) Prove that N(a), the normalizer of a ∈ G is a subgroup of G.

YJ-89/4 (Turn over)

YJ - 89/4 (100)

(6) MA/M.Sc. — Math – IS (103)

- (c) Show that a group G of order 30 has a
- (d) If the vector spaces V and W are isomorphic under the isomorphism T, then show that T maps a basis of V onto a basis of W.
- (e) Prove that the minimal polynomial satisfied by an algebraic element over F is irreducible.
- (f) If 'a' is an element of the Euclidean ring R show that d(a) = d(1) if and only if 'a' is a unit in R.

OR

Answer all questions from the following:

$$2 \times 8 = 16$$

- (a) If ϕ is an automorphism on a finite group G and a∈G, then show that order of 'a' and 'o(a)' is same.
- (b) Compute a^{-1} ba, where $a = (1 \ 3 \ 5) \ (1 \ 2)$ and b = (1 5 7 9) are elements of Sq.
- (c) Is 2 + i , prime in J[i] ? Justify your answer.
- (d) Show that II Z' is a maximal ideal of Z'.
 - Contd.

normal subgroup of order 15.

 $Z_3[x] / (x^2 + 1)$ is a field, where $(x^2 + 1)$ denotes the ideal generated by $(x^2 + 1)$.

(e) Prove with justification that the quotient ring

- Find a basis of Q^2 over R
- (g) Let k be an extension field of F. If a∈ k is a root of $p(x) \in F[x]$, then show that (x - a) / (x - b)्रा अनु ५ व्यक्तिकारी p(x) in k[x].
- (h) Which of the following is constructible?
 - (i) **₹**2
 - (ii) √2 Justify your answer.

Section - B

Answer all questions of the following : $16 \times 4 = 64$

- (a) (i) If G is a group, then show that A(G), the set of automorphisms of G is also a group.
 - (ii) If $O(G) = p^n$, where p is a prime number, then show that $z \neq \{e\}$, where z is the center of G.

OR

(3)(Turn over) YJ = 89/4

- (b) (i) Prove that the set of even permutations

 An in S_n form a sub group of S_n.
- (ii) If G is a group, H a subgroup of G and S
 is the set of all right cosets of H in G,
 then show that there is a
 homomorphism 0 of G into A(S), whose
 kernel is the largest normal subgroup of
 G which is contained in H.
- (a) (i) If G is a finite group, p is a prime and pⁿ /o (G) but pⁿ⁺¹ X O(G), then show that any two subgroups of G of order pⁿ are conjugate.
 - (ii) Let R be a commutative ring with unit element and M be an ideal of R. If M is maximal, then show that R/M is a field. Show that the ideal generated by a prime number p is maximal in Z.

OR

- ுட்(b) (i) Prove thate a Etiblidean ring is a ்ு ் பார்க் நிர்நீர்ந்தி Idea domain.
 - (ii) Prove that the integral domain J[i] is a Euclidean ring.
- (a) (i) Prove that Q[x] / <x²+1> is a field isomorphic to the field of complex numbers, where <x²+1> is the ideal generated by (x²+1).
 - (ii) If a vector space V is of dimension n over F, then show that V is isomorphic to Fⁿ. Also show that two vector spaces over F of same dimension are isomorphic.

OR

(5)

- (b) (i) If f(x) and g(x) are primitive polynomials, then prove that f(x) g(x) is a primitive polynomial.
 - (ii) Let V be the set of all sequences $(a_1, a_2, \dots, a_n, \dots), a_i \in \mathbb{R}$, where

YJ - 89/4

Contd.

(Tum over)