(b) (i) Prove that the Wronskian of two solutions of the equation

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0,$$

 $a_0(x) \neq 0$

is either zero or never zero on (a, b).

- (ii) State and prove the existence and uniqueness theorem for a Linear Differential Equation.
- 6. (a) (i) What do you mean by equations with deviating arguments? Discuss its solution.
 - (ii) Write short note on Fundamental Matrix.

OR

- (b) (i) Discuss the solution of linear system with periodic coefficient.
 - (ii) Discuss the formation of Linear Differential Equation of the first order and explain it by an example.

2016

ORDINARY AND DIFFERENTIAL EQUATION - I

Time: Three Hours] [Maximum Marks: 80

The figures in the right hand margin indicate marks. Answer from both the Sections as directed.

SECTION-A

- Answer any four of the following :
 - (a) Show that $y = x + x \log x 1$ is the unique solution of xy'' 1 = 0, satisfying y(1) = 0 and y'(1) = 2.
 - (b) Solve $(D_2+1) y = \csc x$
 - (c) Solve xy'' + (2x-1)y' + (x-1)y = 0
 - (d) Solve $(x^2y-2xy^2) dx (x^3 2x^2y)dy = 0$
 - (e) Solve $(x^2D^2 xD + 2) y = x \log x$

OR

4×4

2. Answer all questions:

- 2×8
- (a) Define Homogeneous differential equation of first order and give an example.
- (b) The integrating factor of the differential equation $(xy \sin xy + \cos xy) y dx + (xy \sin xy \cos xy) x dy = 0$ is
- (c) Find particular integral of the differential equation $(D^2 + a^2) y = \sin ax$
- (d) If $y_1(x) = \sin 3x$ and $y_2(x) = \cos 3x$ are two solutions of y''+9y = 0, show that they are linearly independent.
- (e) Find complementry function of the differential equation

$$xy^2 - (2x-1)y + (x-1)y = 0$$

- (f) Solve $\frac{dy}{dx} x \tan(y x) = 1$.
- (g) Find the equation to the curve for which Cartesian sub-normal is constant.
- (h) Show that the equation $(1+x^2) y'' + 3xy' + y = 1+3x^2 \text{ is exact.}$

SECTION-B

Answer all questions of the following:

- 16×4
- 3. (a) (i) Solve (x-2y-3)dy + (x-y-2)dx = 0
 - (ii) Solve $(D^2 3D + 2) y = e^{2x} \sin x$

OR

(Continued)

- (b) (i) Solve $(D^3 + 1) y = \cos 2x$
 - (ii) Solve dx + y dy = m (dy y dx)
- 4. (a) (i) Solve $x^2y'' + xy' y = 0$, given that $\left(x + \frac{1}{x}\right)$ is on integral.
 - (ii) Find the family of curves whose normal forms the angle $\frac{\pi}{4}$ with hyperbola xy = c

OR

- (b) (i) Solve $y'' + 4y = \csc^2 x$ by the method of variation of parameter.
 - (ii) Solve $y'' 2 \tan x \cdot y' + 5y = e^x \sec x$.
- 5. (a) (i) If $y = y_1(x)$ and $y = y_2(x)$ are two solutions of the equation y'' + Py' + Qy = 0, where P and Q are continuous functions of x, prove that

$$y_1 \frac{dy_2}{dx} - y_2 \frac{dy_1}{dx} = ce^{-\int P dx}$$
, c is an arbitrary constant.

(ii) Solve $(x^2D^2 - 4xD + 6)y = x^4$

OR