(a) Define integrability of a measurable function.
State and prove Lebesgue convergence theorem.

OR

- (b) State and prove bounded convergence theorem.
- (a) If f is absolutely continuous on [a, b] and f'(x) = 0 a. e., then prove that f is constant.

OR

- (b) State and prove Vitali's Lemma.
- 6. (a) State and prove Minkowski Inequality.

OR

(b) State and prove Riesz-Fischer Theorem.

FI – 15/3(100) (4) MA/M. Sc.(IIS) — Math (201)

2016

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Group as directed.

(ABSTRACT MEASURE)

Group - A

- Answer any four of the following: 4×4 = 16
 - (a) If f is a measurable function and f = g a. e., then prove that g is measurable.
 - (b) Show that if $f(x) = \begin{cases} 0 & x \text{ irrational} \\ 1 & x \text{ rational} \end{cases}$, then

$$R \int_{a}^{\overline{b}} f(x) dx = b - a$$
 and $R \int_{a}^{b} f(x) dx = 0$.

FI – 15/3 (Turn over)

- (c) Show that if f is intergonal over E, then so is $|f| \text{ and } \left| \int_{E}^{f} | \le \int_{E}^{|f|} |f|.$
- (d) Let f defined by $f(x) = \begin{cases} 0, & x = 0 \\ x^2 \sin \frac{1}{x}, & x \neq 0 \end{cases}$

Test whether f is of bounded variation on [-1, 1].

(e) Prove that every convergent sequence is a Cauchy sequence.

OR

Answer all questions from the following :

$$2 \times 8 = 16$$

(a) Let f be an extended real valued function whose domain is measurable. If for each real number α, the sets {x : f(x) ≥ α} and {x : f(x) ≤ α} are measurable, show that for every extended real number α, the set {x : f(x) = α} is measurable.

(2)

- (b) Give example of a non-measurable set.
- c) Define functions of bounded variation.
- (d) Define a convex function. Give its geometric interpretation.
- (e) Prove that || f+g||₁ ≤ || f||₁ + || g||₁.
- (f) Define Δ-approximant to an integrable function on a closed interval.
- (g) Define absolute continuity of a real valued function on a closed interval.
- (h) If g(x) = f(-x) then show that:

$$D^{+}g(x) = -D_{-}f(x).$$

Group – B

Answer all questions of the following: 16×4 = 64

3 (a) Show that the outer measure of an interval is its length.

OR

- (b) Prove that the interval (a, ∞) is measurable.
- FI 15/3 (3) (Turn over)