(4)

- (b) Let H be a Hilbert space, G be a subspace of H and g be a continuous linear functional on G. Then prove that there is a unique continuous linear functional f on H such that $f_{|G} = g$ and ||f|| = ||g||.
- 5. (a) Let H be a Hilbert space and $A \in BL(H)$. Then prove that there is unique $B \in BL(H)$ such that for all $x, y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$

State and prove Generalized Schwarz Inequality.

2017

Time: 3 hours Full Marks: 80

The figures in the right hand margin indicate marks.

Answer from both the Sections as directed.

(FUNCTIONAL ANALYSIS – II) SECTION – A

- Answer any four of the following: (4x4=16)
 (a) Let X be a separable normed space. Then prove that every bounded sequence in X'has a weak* convergent subsequence.
 - (b) Prove that ℓ^p is reflexive for 1
 - (c) Let $\{u_1, u_2,\}$ be a countable orthonormal set in an inner product space X and $x \in X$. Then prove that

$$\sum_{n} |\langle x, u_n \rangle|^2 \le ||x||^2$$

where equality holds if and only if $x = \sum_{n} \langle x, u_n \rangle u_n$

- (d) Let H be a Hilbert space and A ∈ BL(H). Then prove that A is normal if and only if ||A(x)|| = ||A*(x)||
- (e) Let (x_n) be a sequence in a Hilbert space H. Then prove that $x_n \to x$ if and only if $x_n \xrightarrow{\omega} x$ and $\lim Sup_{n\to\infty} ||x_n|| \le ||x||$

(Turn over)

(f) If H has denumerable orthonormal basis then prove that every orthonormal basis for H is denumerable.

OR

Answer all questions:

(2x8=16)

- (a) State Helly's selection principle.
- (b) Prove that ℓ¹ is not reflexive.
- (c) Let $\{x_1, \dots, x_n\}$ be an orthogonal set in X then prove that $||x_1 + \dots + x_n||^2 = ||x_1||^2 + \dots + ||x_n||^2$
- (d) Let X be an inner product space, $\{u_1, u_2, ...\}$ be a countable orthonormal set in X and $k_1, k_2, ...$ belong to K. If $\sum_n k_n u_n$ converges to some x in X, then prove that $\langle x, u_n \rangle = k_n$ for each n and $\sum_n |k_n|^2 < \infty$
- (e) State polarization identity.
- (f) Let X is a reflexive normed space then prove that X' is reflexive.
- (g) Let X be an inner product space. Let $E \subset X$ and $x \in \overline{E}$. Then prove that there exists a best approximation from E to x if and only if $x \in E$.
- (h) Let H be a Hilbert space and $A \in BL(H)$. Then prove that $Z(A) = R(A^{\circ})^{\perp}$.

SECTION - B

(16x4=64)

Answer all questions

Let (z_n) be a sequence of non decreasing functions on [a,b] such that $\alpha \leq z_n(t) \leq \beta$ for some constant α,β all n=1,2,... and $t \in [a,b]$. Then prove that there is a non decreasing function z on [a,b] such that z is right continuous on (a,b) and for some subsequence (z_{n_j}) of (z_n) , we have $z_{n_j}(a) \rightarrow z_n(a)$, $z_{n_j}(b) \rightarrow z_n(b)$ and $z_{n_j}(t) \rightarrow z_n(t)$ for every $t \in (\in a,b)$ at which z is continuous.

OR State and prove Helly's theorem

(a) Let $X = C^1([a,b])$, the linear space of all scalar valued continuously differentiable functions on [a,b]. For x and y in X, define

$$\langle x, y \rangle_a = x(a)\bar{y}(a) + \int_a^b x'(t)\bar{y}'(t) dt$$

Prove that X is inner product space but not / Hilbert Space.

 State and prove the Gram-Schmidt Orthonormalization theorem.

OR

 State and prove the Riesz representation theorem.

OR

(Turn over)

(Turn over)