January, 2017

ELEMENTARY COMPLEX ANALYSIS

Time: Three Hours]

[Maximum Marks: 80

Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

SECTION-A

- 1. Answer any four of the following:
- 4×4
- (a) Determine the regions of Argand diagram defined by $|z-1| + |z+1| \le 4$.
- (b) Show that an equation of the form $z\overline{z} + b\overline{z} + \overline{b}z + c = 0$, c-real, represents a circle. Find its centre and radius.
- (c) Construct the analytic function f(z) = u + iv of which the real part is:

$$U = e^x (x \cos y - y \sin y)$$

(d) Prove that real and imaginary parts of an analytic function satisfy Laplace's equation.

- (e) Evaluate $\int_{c} (z^2 + 3z + z) dz$ where c is the arc of cycloid $x = a(\theta + \sin\theta)$, $y = a(1-\cos\theta)$ between the points (0, 0) and $(\pi a, 2a)$.
- (f) Find the bilinear transformation which maps 0, 1 and ∞ into 1, i and -1 respectively.

OR

- Answer all the questions from the following: 2×8
 - (a) Find the modulus and argument of $\frac{1-i}{1+i}$.
 - (b) For any two complex numbers z_1 and z_2 . Prove that $|z_1 + z_2| \le |z_1| + |z_2|$.
 - (c) Define analytic function with an example.
 - (d) Write Cauchy-Riemann equations in polar form for an analytic function.
 - (e) Evaluate $\int_{c}^{dz} \frac{dz}{z}$, where c is the circle with centre at origin and radius r.

- (f) State Cauchy-Goursat theorem for complex integration of an analytic function.
- (g) Define a conformal transformation.
- (h) Find the fixed points and normal form of the bilinear transformation $\omega = \frac{z-1}{z+1}$.

SECTION-B

Answer all questions of the following:

16×4

- 3. (a) (i) Prove that $\left| \frac{z-1}{z+1} \right| = \text{constant}$ and $\operatorname{amp} \left(\frac{z-1}{z+1} \right) = \text{constant are orthogonal}$ circles.
 - (ii) State and prove Cauchy's inequality for complex numbers. Derive necessary and sufficient conditions for equality.

OR

(b) (i) Prove that the area of the triangle whose vertices are the points z₁, z₂, z₃ on the Argand diagram is

$$\sum \left\{ \frac{(z_2-z_3)|z|^2}{4iz_1} \right\}.$$

Also show that the triangle is equilateral if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$$

- (ii) Find the equation of a straight line joining two points z_1 and z_2 . Also show that the points a and a' are the inverse points with respect to the line $z\overline{b} + \overline{z}b = c$ if $a'\overline{b} + \overline{a}b = c$.
- 4. (a) (i) Prove that the one-valued function f(z) = u(x,y) + iv(x,y) is analytic in a domain D if the four partial derivatives u_x , v_x , u_y , v_y exist, are continuous and satisfy the Cauchy-Riemann equations at each point D.
 - (ii) If f(z) = u + iv is an analytic function of z = x + iy and

$$u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$$

find f(z) subject to the condition

$$f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}.$$

OR

- (b) Define radius of convergence of a power series. Prove that the sum function f(z) of the series $\sum_{n=0}^{\infty} a_n z^n$ represents an analytic function inside its circle of convergence.
- 5. (a) State and prove Cauchy's integral formula for higher order derivatives. Using this formula, prove that

$$\int_{c} \frac{e^{2z}}{\left(z+1\right)^4} dz = \frac{8\pi e^{-2}}{3} i,$$

where c is the circle |z|=2.

OR

(b) (i) Let f(z) be analytic in a simply connected region D of the complex plane. Then show that there exists a function F(z) analytic in D such that

$$F'(z) = f(z) \ (z \in D).$$

- (ii) Using Cauchy's integral formula, evaluate
 - (1) $\int_{c} \frac{e^{z}}{(z+1)^{2}} dz$ where c is the circle |z-1|=3.
 - (2) $\int_{c}^{c} \frac{\log z}{(z-1)^{3}} dz$ where c is the circle $|z-1| = \frac{1}{2}.$
- 6. (a) (i) State and prove necessary condition for a transformation w = f(z) to represent a conformal mapping.
 - (ii) Discuss the application of the transformation $w = z^2$ to the area in the first quadrant of the z-plane bounded by the axes and the circles |z|=a, |z|=b (a>b>0).

OR

(b) (i) Find the bilinear transformation which transforms half plane $R(z) \ge 0$ onto the unit circular disc $|w| \le 1$.

(ii) Find the image of the infinite strips $\frac{1}{4} < y < \frac{1}{2} \text{ and } 0 < y < \frac{1}{2} \text{ under the}$ transformation $w = \frac{1}{2}$. Show the region graphically.

BAM 83 (7)