2017

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as directed.

(Algebra-II)

SECTION-A

1 Answer any four of the following questions: 4×4

- (9) Show that A(W) is a subspace of \hat{V}
- (b) For $A, B \in F_n$ then prove that tr(AB) = tr(BA).
- (c) $T \in A(V)$ is unitary iff $TT^* = 1$.
- (d) Consider $T: F^3 \to F^3$ such that $T(e_1) = e_2$,

$$T(e_2) = e_3$$
, $T(e_3) = e_4$ and $mT = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Find the minimal polynomial for T.

(e) If G is solvable group, then prove that $G^{(K)} = (e)$, for some integer K.

If
$$u, v \in V$$
 then prove that $|\langle u, v \rangle| \le ||u|| ||v||$.

Or

- 2. Answer all questions from the following: 2×8
 - (a) Define a nilpotent operator and a nilpotent matrix.
 - (b) Write down the Jordan blocks of order 1, 2 and 3 belonging to the eigenvalue λ = 3.
 - (c) Suppose A is a 5×5 square matrix with minimal polynomial $m(t) = (t-2)^2$. Find Jordan canonical form.

(d) Is
$$A = \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix}$$
 is normal?

(e) Define solvability by radicals over a field F.

(2)

- (f) Define an annihilator of W.
- (g) Define A* for the matrix

(Continued)

$$A = \begin{pmatrix} 2 + 3i & 2 - i \\ 1 - 2i & 2 - 2i \\ 3 + 4i & 2 + i \end{pmatrix}$$

(h) Find the basis $\{f_1, f_2, f_3\}$ which is dual to the usual basis $\{e_1, e_2, e_3\}$ of \mathbb{R}^3 .

SECTION-B

Answer all questions.

 16×4

If V is finite-dimensional and W is a subspace of V, then \hat{W} is isomorphic to $\overline{V}/A(W)$ and $\dim A(W) = \dim V - \dim W$.

Or

(b) If K is a finite extension of F, the G(K, F) is a finite group and its order, o(G(K, F)) satisfies $o(G(K, F)) \leq [K : F]$.

4 (a) Let
$$V = F^{(3)}$$
 and suppose that $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$

in the matrix of $T \in A(V)$ in the basis $v_1 = (1,0,0)$, $v_2 = (0,1,0)$, $v_3 = (0,0,1)$. Find the matrix of T in the basis $u_1 = (1,1,1)$, $u_2 = (0,1,1)$, $u_3 = (0,0,1)$.

Or

- (b) If V is finite dimensional over F, then $T \in A(V)$ is regular iff T maps V onto V.
- 5. (a) If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, then T satisfies a polynomial of degree n over F.

Or

- (b) For each i=1,2,...K, $V_i \neq (0)$ and $V = V_1 \oplus V_2 \oplus ... \oplus V_K$, prove that the minimal polynomial of T_i is $q_i(x)^{l_i}$.
- 6. (a) The linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.

(4)

For $A, B \in F_n$, then prove that

(i) $\det(AB) = (\det A) (\det B)$.

(ii) If A is invertible then for all B, $\det(ABA^{-1}) = \det(B)$.