- (b) Show that $\Gamma\left(\frac{1}{6}\right) = 2^{-\frac{1}{2}} \left(\frac{3}{\pi}\right)^{\frac{1}{2}} \Gamma\left(\frac{1}{3}\right)^2$
- 5. (a) Prove that an entire function of fractional order assumes every finite value infinitely many times.

Or

- (b) Prove that the function $\tau(s) = \frac{1}{2}s(1-s)$ $\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \tau(s) \text{ is entire and satisfies}$ $\tau(s) = \tau(1-s).$
- 6. (a) Prove that an elliptic function without poles is a constant.

Or

(b) Prove that $p'(z) = -\sigma(2z) |\sigma(z)|^4$.

2017

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as directed.

(Advanced Complex Analysis)

SECTION-A

- 1. Answer any four of the following questions: 4 × 4
 - (a) Evaluate $\int_{0}^{\infty} y^{2}e^{-2y^{2}}dy$
 - Investigate the convergence of the infinite product: $\prod_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)$
 - (c) Expand $f(z) = \sin z$ in a Taylor series about $z = \frac{\pi}{4}$.

(d) Evaluate
$$\int_{C}^{\overline{z}} dz$$
 from $z = 0$ to $z = 4 + 2i$ along the curve C given by $z = t^2 + it$.

- (e) Find the fixed points of the transformation
- (f) Find the value of $\oint_C \frac{\sin^{6z}}{z \frac{\pi}{z}} dz$, when C:|z|=1.

 2×8

- 2. Answer all questions from the following:
 - (a) Determine the singularity of the function
 - (b) Find the value of

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...$$

- (c) Define simple periodic functions and double periodic functions.
- (d) What is the value of $\Gamma\left(-\frac{1}{3}\right)$.

(2)

- (e) Define Riemann zeta function.
- (f) Find the poles and residues of $\frac{1}{(z^2-1)^2}$.
- (g) Is sin z is bounded? Justify your answer.
- (h) State fundamental theorem of algebra.

SECTION-B

Answer all questions.

 16×4

$$3/(g)$$
 Evaluate $\int_{0}^{\infty} \frac{dx}{x^6+1}$.

- (b) If a function f(z) is analytic on R, then show that $\int f(z)dz = 0$.
- 4. (a) Develop $\log \left(\frac{\sin z}{z} \right)$ in powers of z up to the term z 6.

MA/M.Sc-Math-IIS-(204)

(Continued)

MA/M.Sc-Math-IIS-(204)

(3)

(Turn Over)