- 5. (a) (i) State and prove Tychonoff Lemma.
 - (ii) Prove that X is normal if and only if for each pair of disjoint closed subsets F_1 and F_2 of X there exits, a continuous function $g: X \rightarrow [a,b]$, (a < b), such that $g(F_1) = \{a\}$ and $g(F_2) = \{b\}$.

OR

- (b) (i) Show that every Lindelöf space is normal.
 - (ii) State and prove Tietze's extension theorem.
- (a) (i) State and prove Urysohn's Metrization theorem.
 - (ii) If (X, J) be a regular space whose topology J has a σ-locally finite base
 B. Then show that X is a normal space.

OR

- (b) (i) If X be a T₃ space whose topology J has a σ-locally finite base, then show that X is metrizable.
 - (ii) Show that metrizability is hereditary and topological invariant.

January, 2017 TOPOLOGY

Time: Three Hours]

[Maximum Marks: 80

Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

SECTION-A

1. Answer any four of the following:

4×4

- (a) If A be a subset of space X, show that A∪D(A) is closed subset of X.
- (b) Show that if X is a countably compact, then it has Bolzano-Weierstrass property.
- (c) Show that connectedness is topological property.
- (d) Define Fort space and show that Fort space is normal.
- (e) Show that every subspace of a completely regular space is also completely regular.
- (f) Show that for every open covering of a metric space (X, d) there is a σ-discrete open cover which refines it.

OR

- 2. Answer all the questions from the following: 2×8
 - (a) Define bases for a topology with example.
 - (b) What is equivalent bases? Write condition for equivalence of bases.
 - (c) Define compact space with example.
 - (d) If f: X→ Y be continuous and onto and A is a dense subset of X, show that f(A) is a dense subset of Y.
 - (e) Define completely normal space.
 - (f) Define T₂ space with example.
 - (g) Define locally finite family with example.
 - (h) If X and Y are separable spaces, then X × Y is a separable space, prove it.

SECTION-B

Answer all the questions:

16×4

- 3. (a) (i) If A be a subset of X, then show that the interior of A is the complement of the closure of the complement of A and the closure of A is the complement of the interior of the complement of A.
 - (ii) If A and B be subsets of a topological space X and A is open in X, then show that $A \cap \overline{B} \subset \overline{A \cap B}$.

OR

- (b) (i) State and prove the criteria for bases for a topology.
 - (ii) Give an example of two subsets A and B on the real line \mathbb{R} such that the four sets $\overline{A} \cap B$, $A \cap \overline{B}$, $\overline{A} \cap B$ and $\overline{A} \cap \overline{B}$ are all distinct.
- (a) (i) Show that a topological space (X, J) is compact if every family of sub-basic closed sets with finite intersection property has non-empty intersection.
 - (ii) If h: (X, ρ₁) → (Y, ρ₂) be a bijection. Then show that h is a homomorphism if and only if h is open and continuous or h is closed and continuous.

OR

- (b) (i) If f: X→ Y be continuous and onto, show that if X is a Lindelöf space then Y is also Lindelöf space.
 - (ii) In a topological space X show that following statements are equivalent:
 - (S_1) X is disconnected
 - $(S_2) X = A \cup B$ where A and B are two non-empty disjoint closed sets
 - (S₃) X has a non-empty proper closen subset