(+)

6. (a) Solve the initial value problem

$$\dot{x} = \begin{pmatrix} -1 & -1 & -2 \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{t},$$
$$x(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

OR

(b) (i)) Show that the given system of non linear differential equation is asymptotically stable at (0,0).

$$\begin{cases} \frac{dx}{dt} = -3x^3 - y\\ \frac{dy}{dt} = x^5 - 2y^3 \end{cases}$$

 (ii) Solve the initial value problem x = 3x - 2y, y = 2y - x subject to initial condition (x₀, y₀) = (3,4). Also draw the phase portrait of the above system.

M.A./M.Sc.-Math.-IVS-(CE-414)

2017

Time: 3 hours Tull Marks: 80

The figures in the right hand margin indicate marks.

Answer from both the Sections as directed.

(ORDINARY DIFFERENTIAL EQUATIONS - II) SECTION - A

- 1. Answer any four of the following: (4x4=16)
 - (a) Plot the phase portrait and classify the fixed point of the linear system
 x = 3x 4y, y = x y
 - (b) Prove that

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk$$

- (c) Show that $P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 1)^n$
- (d) Show that $J_{1/2} = \sqrt{\frac{2}{\pi x}} \sin x$
- (e) Let φ, ψ, χ be real valued continuous (or piecewise continuous functions on a real t interval $I: a \le t \le b$. Let $\chi(t) > 0$ on I, and suppose for $t \in I$ that

$$\varphi(t) \leq \psi(t) + \int_{a}^{t} \chi(s) \varphi(s) ds$$

Prove that on I

$$\varphi(t) \le \psi(t) + \int_a^t \chi(s)\varphi(s) \exp\left(\int_s^t \chi(u)du\right)ds$$

(f) Find
$$e^{At}$$
 if $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{pmatrix}$

OR

- 2. Answer all questions:
 - (a) State strum's separation theorem.
 - (b) What is asymptotically stable?
 - (c) Define regular and singular point.
 - (i) Define Liapunov function.
 - (e) Show that a function of the form ax³ + bx²y + cxy² + dy³ cannot be either positive definite or negative definite
 - (f) Write down the condition for which a spiral occurs in the system.
 - (g) Draw the phase portraits of the system of differential equation

$$\dot{x} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} x, \ a < 0, b < 0$$

(h) Show that the roots of the indicial of the differential equation

$$ty'' + y' - 4y = 0$$
 are equal.

SECTION - B

Answer all questions

(16x4=64)

3. (a) Show that the equation

$$2(\sin t)y'' + (1 - t)y' - 2y = 0$$
has two solutions $y_1(t)$ and $y_2(t)$ of the form

$$y_1(t) = \sum_{n=0}^{\infty} a_n t^n, y_2(t) = t^{1/2} \sum_{n=0}^{\infty} b_n t^n$$

OR

(b) Find two linearly independent solutions of the Tchebycheff differential equation

$$(1 - t^2)y'' - 2ty' + \alpha^2 y = 0$$

where a is a constant.

4. (a) Find the Eigen values and corresponding Eigen functions of the Eigen value problem

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + \mu y = 0 \ (\mu > 0)$$

with the boundary condition $y'(1) = 0, y'(e^{2\pi}) = 0.$

OR

(b) Using Green's function method solve the boundary value problem

$$u'' + 3u' + 2 = \varphi$$

 $u(1) = 2u(0)$
 $u'(1) = a$

5. (a) State and prove the Strum's comparis on theorem

OR

(b) State and prove Comparison theorer n of Hille-Wintner

(2x8=16)