(4)

(a) Solve the problem by Kelley's cutting plane algorithm:

> Mininmize $4x_1 + 5x_2$ subject to $x_1^2 + 2x_1x_2 + 2x_2^2 \le 4$ $-x_1^2 - x_2^2 + 4x_1 \ge 3$

(b) Solve the problem by Frank-Wolfe method Mininmize $(5x_1 + 2x_2)/(x_1 + 8x_2 + 1)$ subject to

$$3x_1 + x_2 \ge 1 x_1 \ge 0, x_2 \ge 0$$

6. (a) A can is to be made in the form of right circular cylinder to contain at least V cubic inches of oil. What dimensions of the can will require the least amount of material?

OR

(b) A rectangular box, open at the top, is required to hold at least 256 cubic inches. Find the dimensions of the box for which the surface area is a minimum.

M.A./M.Sc.-Math.-IVS-(CE-404)

2017

Time: 3 hours Full Marks: 80

The figures in the right hand margin indicate marks.

Answer from both the Sections as directed.

(OPTIMIZATION TECHNIQUES – II) SECTION – A

1. Answer any four of the following:

(4x4=16)

- (a) Prove that the quadratic program cannot have an unbounded solution when G is a positive matrix.
- (b) Prove that the function $F(x) = -\sum_{i=1}^{s} x_i \ln(x_i/\sum_{i=1}^{s} x_i)$ is concave for $\mathbf{x} = (x_1, \dots x_s)^T > \mathbf{0}$
- (c) Prove that a point $x^0 \in \Omega_P$ is an optimal solution to Quadratic Program if and only if , for some $\lambda^0 \ge 0$, (x^0, λ^0) is a saddle point of the Lagrangian $L(x, \lambda) = f(x) \lambda^T (Ax b)$, where $\lambda \ge 0$.
- (d) Prove that a solution point x* is K-T point of the problem

Minimize f(x)

subject to

$$Ax = b$$
$$x \ge 0$$

(e) Using Kelley's cutting plane method to solve the program:

 $Minimize \ z = -x_1 + x_2$

subject to

$$x_1 + x_2 \le 5$$

$$-x_1^2 - x_2^2 + 4x_1 - 3$$

$$x_1 \ge 0, x_2 \ge 0$$

(f) Solve the height of projectile problem.

(Turn over)

(a) Let $p_i > 0, q_i > 0, \sum_{i=1}^r p_i = \sum_{i=1}^r q_i$ then

prove that $-\sum_{i=1}^{r} p_i \ln p_i \le -\sum_{i=1}^{r} q_i \ln q_i$

SECTION - B

(3)

Answer all questions

(16x4=64)

3. (a) Apply Wolfe's method to the program:

Minimize
$$f(x_1, x_2)$$

= $-10x_1 - 25x_2 + 10x_1^2 + x_2^2 + 4x_1x_2$

subject to

$$x_1 + 2x_2 \le 10 x_1 + x_2 \le 9 x_1 \ge 0, x_2 \ge 0 \mathbf{OR}$$

(b) Apply Fletcher's method to the program:

Minimize
$$f(x_1, x_2) = \frac{1}{2}x_1^2 + 2x_2^2$$

sue bject to
 $3x_1 + 4x_2 \ge 13$
 $x_1 \ge 0, x_2 \ge 0$

4. (a) Use Lemke's complementary pivoting algorithm to solve the quadratic program: $Mininmize\ 2x_1 + 4x_2 - x_1^2 - x_2^2 + 2x_1x_2$ subject to

$$-x_1 + x_2 \le 1 x_1 - 2x_2 \le 4 x_1 \ge 0, x_2 \ge 0$$

(b) Consider the linear complementarity problem of finding w and x satisfying w - Mx = q, $w^Tx = 0$, $w \ge 0$, $x \ge 0$

where

$$M = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & -1 \\ -2 & 1 & 0 \end{pmatrix}, \ q = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$$

- (i) Is the matrix M copositive -plus?
- (ii) Apply Lemke's algorithm to solve the problem.

(Turn over)

(b) State weak duality theorem.

2. Answer all questions:

- (c) State strong duality theorem
- (d) Let G be an $n \times n$ symmetric matrix, A an $m \times n$ matrix, and

$$M = \begin{pmatrix} G & A^T \\ -A & 0 \end{pmatrix}$$

Then prove that M is copositive if G is copositive

(e) Show how geometric programming can be used to test the consistency of the constraints

$$g_k(x) \le 1, (k = 1, \dots, m)$$

 $x > 0$

- (f) Define Kuhn-Tucker point.
- (g) Let G be an $n \times n$ symmetric matrix. Further suppose the system

$$Mx + q \ge 0, \ x \ge 0$$

where $M = \begin{pmatrix} G & A^T \\ -A & 0 \end{pmatrix}, \ q = \begin{pmatrix} c \\ b \end{pmatrix}, \ x = \begin{pmatrix} z \\ \lambda \end{pmatrix}$, is inconsistent. Then prove that there exists a vector $d \in \mathbb{R}^n, d \ge 0$ such that $Ad \le 0$.

(h) Define prototype primal geometric program.

(Turn over)

(2x8=16)