5. (a) Prove that a function f is of bounded variation on [a, b] if and only if f is difference of two monotone real-valued functions on [a, b].

Or

- (b) Prove that a function F is an indefinite integral if and only if it is absolutely continuous.
- 6. (a) State and prove Holder inequality.

Or

(b) State and prove Riesz-Fischer theorem.

MA/M.Sc-Math-IIS- (201)

2017

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Groups as directed.

(Abstract Measure)

GROUP-A

- 1. Answer any four of the following questions: 4×4
 - (a) Define outer measure. Show that m^* is translation invariant.
 - (b) Define the upper Riemann integral. Let f be bounded function defined on [a, b]. If f is Riemann integrable on [a, b], then prove that it is measurable.
 - (e) Let f be a non-negative measurable function. Show that $\int f = 0 \implies f = 0$ a.e.

(d) If f be defined by

$$f(x) = \begin{cases} 0, & x = 0 \\ x \sin \frac{1}{x}, & \text{if } x \neq 0 \end{cases}$$
 then

find $D^-f(0)$ and $D_+ f(0)$.

- (e) Define a norm in L^{∞} . Show that $||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$
- 2. Answer all questions from the following: 2×8
 - (a) Define a measurable set.
 - (b) Give example of a continuous function g and a measurable function h such that h o g is not measurable.
 - (c) Define convergence of a sequence $\langle f_n \rangle$ of measurable functions.
 - (d) Write the statement of Lebesgue convergence theorem.
 - (e) Show that $D^{+}[-f(x)] = -D_{+}f(x)$.

- (f) What do you mean by Jensen inequality?
- (g) Define Banach space.
- (h) What is Minkowski inequality?

 16×4

3. (a) Let $\langle E_n \rangle$ be an infinite decreasing sequence of measurable sets. Let mE_1 is finite. Then prove that

$$m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} mE_n$$

0

- (b) Prove that the collection of measurable sets is a σ-algebra.
- 4 (a) State and prove monotone convergence theorem.

Or

(b) If $\langle f_n \rangle$ is a sequence of nonnegative functions, then prove that

$$\int \underline{\lim} \, f_n \le \underline{\lim} \int f_n$$