(b) Explain the electron-phonon interaction and its effect on superconducting property. What is quantum tunnelling effect.

2016

CONDENSED MATTER AND MATERIALS PHYSICS-I

Time: Three Hours]

[Maximum Marks: 80

Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

SECTION-A

1. Answer any four of the following:

4×4

(a) Show that in tight-binding method of band calculation, the dispersion relation is

$$E(\vec{k}) = E_0 - \alpha - \beta \sum_{m} \exp(i\vec{k}\vec{r}_m)$$

where symbols have their usual meaning.

- (b) Obtain the Boltzmann's transport equation for system of particles in dynamical equilibrium.
- (c) Construct the Slater determinant for 2n closed electron system.
- (d) How Generalised Gradient Approximation (GGA) is different from Local Density Approximation (LDA)?

100

- (e) Explain Type-I and Type-II superconductors. What is difference between both types?
- (f) What is Josephson's effect?

OR

- 2. Answer all the questions from the following: 2×8
 - (a) Write four salient features of OPW method of band structure calculation.
 - (b) A superconducting lead has a critical temperature of 7.26k at zero magnetic field and a critical field of 8×10⁵ A/m at OK, Find the critical field at 5k.
 - (c) What is concept of Fermi surface.
 - (d) Explain briefly the coherence length for electrons in superconductors.
 - (e) Explain the effects of isotopes on superconductors.
 - (f) Write the Schrödinger equation for helium atom.
 - (g) What is meaning of quasi-electron?
 - (h) Explain briefly the concept of phonon drug.

SECTION-B

Answer all the questions:

16×4

 (a) Explain the de Haas-Van Alphen effect for determination of geometrical shape of Fermi surface.

OR

- (b) Obtain the expression of thermal conductivity of metals by using Boltzmann transport equation.
- (a) Explain the general formulation of density functional theory. Also explain the Kohn-Sham equations.

OR

(b) Explain the self-consistent-field procedure. Show that electronic energy of a 2n-electron molecule is

$$E = 2\sum_{i=1}^{n} H_{ii} + \sum_{i=1}^{n} \sum_{j=1}^{n} (2J_{ij} - K_{ij})$$

where J_{ij} and K_{ij} are coulomb and exchange integrals.

(a) Derive the London equations and describe how it's solution explain Meissner effect.

OR

- (b) Explain the thermodynamics of superconductors. Also find the Rutger's formula for specific heat of a superconductor.
- 6. (a) Explain the BCS theory of superconductors.

OR