(b)	Define	normal	modes	and	normal
	coordinates and discuss the application of				
group theory to normal mo				el.	

2016 (January)

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as per direction.

(CLASSICAL MECHANICS)

Section - A

- Answer any four of the following: 4×4 = 16
 - (a) Explain the inertia tensor and the moment of inertia.
 - (b) Explain principle axis transformation.
 - (c) Explain the physical significance of Hamiltonian.
 - (d) State and explain Poisson's Theorem.
 - (e) Explain the motions of particle under inverse square force as the case of a Kepler's problem.

YJ – 135/2 (100) (4) M. Sc. — Phy – IS (102)

YJ – 135/2 (Tum over)

(f) Briefly explain the general theory of small oscillations.

OR

Answer all questions from the following :

 $2 \times 8 = 16$

- (a) What do you mean by rate of charge of vector?
- (b) Define heavy symmetrical top.
- (c) Explain holonomic and non-holonomic systems.
- (d) Explain types of generating function.
- (e) Distinguish between Poisson and Lagrange brackets.
- (f) Explain Kepler's Law.
- (g) Define normal coordinators of vibration.
- (h) What is torque? Explain.

Section - B

Answer all questions :

 $16 \times 4 = 64$

Contd.

(a) With a neat diagram, explain Euler's angles.
 Derive Euler's equations for the motion of a rigid body and explain the significance of these equations.

OR

YJ-135/2 (2)

- (b) What is Coriolis effect ? Discuss its effects on natural phenomena. Explain the torque free motion of a rigid body.
- (a) Explain some techniques of the calculus of variations. Discuss the Hamilton's principle.

OR

- (b) State and explain variational principle and derive the Hamilton's equations of motions from variational principle.
- (a) Explain canonical transformations with examples. Discuss the relation between canonical transformations and fundamental Poisson brackets.

OR

- (b) Explain Hamilton-Jacobi Theory. Find the amplitude of a harmonic oscillator using Hamilton-Jacobi Theory.
- (a) Explain the principle axis transformation in the theory of small oscillations.

OR

YJ – 135/2 (3) (Turn over)