(b) Discuss the combination of the angular momenta and hence explain the CG coefficients for the states with J₁ = 1 and

$$J_2 = \frac{1}{2}$$

M. Sc. — Phy – IS (104)

2016 (January)

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer from both the Sections as per direction.

(QUANTUM MECHANICS - I)

Section - A

- 1. Answer any four of the following: 4×4 = 16
 - (a) Explain the physical interpretation of Hermitian Operators.
 - (b) Discuss the properties of unitary transformation of basis vectors.
 - (c) Define Schrodinger Picture and explain its properties.
 - (d) Explain how orbital angular momentum operator as generators of rotation.

- (e) Explain the porperties of CG coefficients.
- (f) Obtain the CG coefficients in the case of

$$J_1 = \frac{1}{2}$$
 and $J_2 = \frac{1}{2}$.

OR

Answer all questions from the following :

$$2 \times 8 = 16$$

- (a) Define Linear Vector Space.
- (b) Explain closure properties of basis set.
- (c) Define matrix representation.
- (d) Explain the properties of creation operator.
- (e) Determine the eigen value of L2.
- (f) What do you mean by raising and lowering operator?
- (g) Define spin angular momentum.
- (h) Define explicit matrices of J_z.

Section - B

Answer all questions:

 $16 \times 4 = 64$

(a) Define Dirac Delta function and discuss its properties. Explain its applications in

YJ-137/2

(2)

Contd.

quantum mechanics. Explain the orthogonality of eigen vectors.

OR

- (b) State and explain expansion theorem. Discuss the operator representation in matrix form.
- (a) Obtain the equations of motion in both Heisenberg and interaction pictures.

OR

- (b) Discuss the operator method in the solution of harmonic oscillator problem.
- (a) Obtain the commutation relations between the operators L², L_x, L_y, L_z. Prove that the operators L² and L_z commute.

OR

- (b) Derive the expression for L_x, L_y, L_z and L² in spherical polar coordinate system.
- (a) What are Pauli Spin Matrices? Explain their properties. Obtain the eigen volues and eigen functions of them.

OR

YJ - 137/2 (3) (Turn over)