Total Number of Pages: 03

B.TECH 15BE2106

2nd Semester Regular Examination 2015-16 DATA STRUCTURE USING 'C' BRANCH(S):ALL

Time: 3 Hours Max marks: 100 O.CODE: W406

Answer Part-A which is compulsory and any four from Part-B. The figures in the right hand margin indicate marks.

Part-A (Answer all the questions)

Q1 Answer the following questions:

 (2×10)

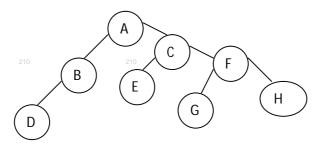
- a) If an array with the name S exists, which of the following statements is incorrect: i. S++ ii. printf("%d",*(S+1)) iii. printf("%u",S+1) iv. All are correct
- **b)** An array can be categorized as which type of data-structure:

i. dynamic ii. static iii. int/char/float iv. multi-dimensional

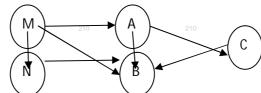
- c) An orphaned block is the result of:
 - i. memory leak ii. garbage collection iii. free function iv. all of the above
- **d)** Dynamic memory allocation for a node in a linked list is done from:
 - i. RAM ii. ROM iii. Hard disk iv. Heap
- e) Linked list is linear data structure from storage point of view.
 - i. True ii. False
- f) The postfix expression: 3, 16, 2, +, *, 12, 6, /, when evaluated gives the following result: i. 58 ii. 56 iii. 52 iv. 54
- g) Which of the following data-structures are indexed structures:
- i. linear arrays ii. linked lists iii. both of the above iv. none of the above
- h) The depth of a complete binary tree is given by:
 - i. n log n ii. n log n +1 iii. log n iv. log n +1
- i) All the non-leaf nodes except the root node in a multi-way search tree of order n have at least: i. n-1 children ii. n children iii. n/2 children iv. n*2 children
- i) Which of the following sorting procedures is the slowest:
- i. Quick sort ii. bubble sort iii. Shell sort iv. insertion sort

Q2 Answer the following questions in brief:

 (2×10)


- a) Suppose K[113:299][113:320] be a float array with starting address 5000.Find the address of K[139][143] using row major ordering.
- **b)** Explain ADT with suitable examples.
- **c**) Write down the main demerit of array implementation of simple queue. How it can be avoided?
- **d)** Explain self referential structure with a suitable example. Why it is used in data structure?
- e) Briefly explain the functions used in dynamic memory management in C.

Pane


- f) Define sparse matrix. How linked list can be used to represent it?
- g) Explain linked list representation of binary tree in memory.
- h) How many distinct binary trees can be formed with n nodes?
- i) What do you mean by isolated vertex and pendant vertex?
- j) What do you mean by compaction and garbage collection?

Part-B (Answer any four questions)

- Q3 a) Write a complete C program to create a double linked list and traverse each node of it. (8)
 - b) Briefly explain the matrix representation of graph in memory. (5)
 - c) Explain header linked list with suitable examples. 210 (2)
- Q4 a) Write a complete C program to create a stack using an array and perform the following operations: (i) push (ii) pop
 - b) Convert the given infix expression into prefix expression using appropriate algorithm: (A+B*C*(M*N^P+T)-G+H) (5)
 - c) Briefly explain priority queue. (2)
- Q5° a) Write a complete C program to create a queue and perform the following operations: (8) (i) insert (ii) delete (iii)traverse
 - **b)** Find the preorder, inorder and postorder traversal of nodes from the following binary tree: (5)

- c) Explain AVL tree with an example. (2)
- **Q6**° **a)** Write C segments for linked list representation of simple queue for insertion 210 (5) and deletion operations.
 - **b)** Define BST. Construct a BST using the following node values: 10,12,8,1,4,20,16,3,15,2,-5,0,19 and then show the status of BST after deleting the nodes 20,10,2,1 from it.
 - c) Construct binary tree from the given traversals:
 (i)preorder-ABDGHKCEF, postorder-GKHDBEFCA
 (ii)preorder-ABCDEFG, inorder-BDCAFEG
- Q7 a) Write C segments to insert a node at the beginning of single circular linked list and delete a node from the end of a single linked list. (5)
 - b) Which data structures are used for BFS and DFS? Apply DFS algorithm in the given graph to find the traversal order of vertices, where M is the starting vertex: (7)

(6)

	c)	What do you mean by searching? Write a complete C program to perform the binary search operation for a key value in a given list of integers. What do you mean by sorting? Sort the given elements in ascending order using heap sort mechanism: 10,15,3,11,12,2,20,24					(3)	
Q8 [°]	a)b)c)						(6)(5)(4)	
Q9 ₂₁₀	a)b)c)d)e)	Write short notes on the D-Queue Threaded Binary Tree Warshall's Algorithm Hashing B Tree	e following (Any	Three):	210	210	(5 x 3)	
210		210	210	210	210	210		
210		210	210	210	210	210		
210		210	210	210	210	210		
210		210	210	210	210	210		