January, 2017

MATHEMATICAL METHODS IN PHYSICS

Time: Three Hours] [Maximum Marks: 80

Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

SECTION-A

- Answer any four questions of the following: 4x4
 - (a) Show that the function $\frac{1}{z^3 + 1}$ is analytic or not.
 - (b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} \cdot dx = \frac{\pi}{2}$ by contour integration.
 - (c) Show that the covariant derivative of δ_j^i is zero.
 - (d) Explain the Dihedral Group.

(e) Show that

$$P_K^1(x) - 2x\; P_{K-1}^1(x) + P_{K-2}^1(x) \; = P_{k-1}(x).$$

(f) Find Laplace transform of cosh² 4t.

OR

Answer all questions from the following:

2×8

- (a) Define Analytic Function.
- What is branch point and branch cut?
- Define tensor.
- What is Covariant Tensor?
- What is group and sub-group?
- Define character.
- What is Laplace Transform?
- Write one property of Fourier transform.

SECTION-B

Answer all questions:

16×4

(Continued)

3. (a) Obtain the necessary and conditions of a function of a complex variable to be analytic. Prove that

$$I = \int_{0}^{2\pi} \frac{\cos 2\theta \ d\theta}{(5 + 4\cos \theta)} = \frac{\pi}{6}.$$

OR

- State and prove Laurent's theorem. Explain the function $f(z) = \frac{1}{z(z-1)}$ in terms of Laurent's series.
- (a) Give the transformation laws of tensor of 3rd order. Explain the quotient law of tensor.

OR

- (b) Explain fundamental tensors. Calculate the Christoffel symbols in cylindrical polar coordinates.
- (a) Discuss the crystallographic point groups. Show that for a finite group G, every representation is equivalent to a unitary representation.

OR

- (b) Explain the character of representation. Show that the number of irreducible representations of an Abelian group equals to the number of group elements.
- 6. (a) Obtain the power series solution of Legendre's differential equation.

OR

Explain the Convolution theorem in Fourier transform. Evaluate Laplace transform of $\sin^2(t)$.