(a) Explain in detail the effect of radiation damping on the monochromatic nature of radiations emitted by a harmonic oscillator. 16

notice the angular control of the discountry

(b) Explain Rayleigh scattering the basis of scattering of electromagnetic wave by bound electrons.

A CONTRACT OF THE PARTY OF THE

terdisis contratadam attanta

wite board on the Total Brooks of the ar-

2017

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(CLASSICAL ELECTRODYNAMICS)

SECTION-A

1. Answer any four questions:

4×4

- (a) Explain electric dipole and multiple radiations.
- (b) What are Lienard-Wiechert potentials? Explain.
- (c) Explain the concept of virtual photon.
- (d) Write a note on Bremsstrahlung radiation.
- (e) Obtain dispersion relation.

(f) Explain the absorption of radiation by an oscillator.

Or

2. Answer all questions:

2 ×8

- (a) Define radiation field.
- (b) What is multipole radiation?
- (c) What are reterted potentials?
- (d) What do you mean by convection potential?
- (e) Define scattering cross-section.
- (f) What is dispersion? Explan.
- (g) What is radiation damping?
- (h) What is Thomson scattering?

SECTION-B

Answer all questions:

16×4

3. (a) Obtain the solution of wave equations for potentials by Fourier Analysis. 16

Or

- (b) What is Hertz potential? Obtain the expressions for radiation fields by Hertz method.
- 4. (a) Derive expressions for Lienard-Wiechert potentials and fields for a moving point charge.

Or

- (b) What is wave guide? Explain the propagation of electromagnetic waves in rectangular wave guides.
 16
- 5. (a) Obtain the expressions for fields of an accelerated charge radiation at low velocities paralell to acceleration.

Or

(b) Obtain the expression for classical cross -section for bremsstrahlung in a coulomb field and explain Cherenkov radiation.