(a) Explain ideal Bose gas and derive equation for the Bose-Einstein condensation.

Or

(b) Define 1st and 2nd order phase transition and discuss Ising model.

2017

Time: 3 hours

Full Marks: 80

Answer from both the Sections as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(STATISTICAL MECHANICS)

SECTION-A

4 x

- 1. Answer any four of the following:
 - (a) Explain postulates of classical statistical mechanics.
 - (b) Explain energy fluctuation in canonical ensemble.
 - (c) Explain third law of Thermodynamics
 - (d) Explain Fermi-Dirac distributions
 - (e) Explain Pauli paramagnetism.
 - (f) Explain Planck's law.

Or

- 2. Answer all questions from the following: 2×8
 - (a) Define ensemble.
 - (b) What is do you mean by classical ideal gas?
 - (c) Define Gibb's paradox.
 - (d) Define Density matrix.
 - (e) Define paramagnetism.
 - (f) What is Planck's law?
 - (g) What is classical limit?
 - (h) Define partition function.

SECTION—B

Answer all questions :

16 × 4

(Continued)

(a) State and Liouville's theorem and show that two weakly interacting systems are additive. Or

- (b) Explain equipartition theorem and calculate the parition function for a classical ideal monoatomic gas.
- (a) Explain postulates of quantum statistical mechanics and discuss the ensembles in quantum statistical mechanics.

Or

- (b) Explain ideal gas in grand canonical ensemble and obtain M-B distribution law.
- (a) Obtain the equation of state of ideal Fermi gas.

Or

(b) Explain in detail the theory of white dwafy stars.

M.Sc.-IVS- Phy (CC-401)

(Turn Over)