	Reç	gistration No:												
Tota	I Nu	mber of Pages:	02	210			210			210)	-	210	B.TECH 15BE2103
I	BRAI	NCH: AERO, BIC	TECH,	l st Seme , CHEM, ETTAMI	THE CIVIL	RMO ., CSI	DYNA E, EC	AMICS E, EE	S E, EL	ECT	RICA	L, ETC	, FAT, IT	, MECH,
	210	Answ		210 t-A whic	M C hisc	ax Ma (.COE comp		100 950 y and	-		from		210	210
			The fig	jures in				•			mark	(S.		
Q1		Answer the fo		• •	ions	: <i>mu</i>	ltiple	type	or d	ash		p type		(2 x 10)
	a) ²¹⁰ b) c) d)	First law of them A process, in wh during its expan Second law of th (a) heat (b) work (d) entropy (e) in	nodyna nich the sion or nermod ((c) en nternal	amics sat tempera compres ynamics thalpy energy.	es tha iture c sion, define	at of the is cal es	worki led	 ng su	bstan	prc	main cess			210
	e) _{₂10} f) g) h)	A process, in wh during its expan For a reversible (a) zero (b) mini (d) infinite (e) ur The C.O.P. for a In a reversible c (a) increases (b)	sion or adiaba mum (c nity. a Carno ycle, th	compres tic proce c) maxim t heat pu e entrop	sion, ss, the um ımp is	is cal e cha equa	led nge ir al to	i entro		prc			ant ₂₁₀	210
	210 i) j)	 (c) does not cha (e) depends on Kelvin-Planck's (a) conservation (d) Conversion of Absolute zero te 	the pro law dea of ene of heat	perties o als with rgy (b) c into work	f work onser (e) c	ing s vatior onver	ubstar n of he rsion c	nce. eat (c) of wor	cons		ion o	f mass	210	210
Q2	a) ₂₁₀	Answer the foll Give one examp manner. What is	ole of a s the na	system me of su	vhich Ich a s	does systei	not₂in m?	teract	t with			•	any	(2 x 10)
	b) c) d) e)	What are the me measureable ex Out of isotherma a given final pre Explain Thermo What do the are	tensive al and a ssure, v dynami as unde	e property adiabatic which on ic equilib er p-v an	/. proce e will rium. d T-S	ess of consi curve	comp ume le	ressio ess wo	on bet ork?	tweer	n an i	nitial st		
	f) ₂₁₀ g)	Define the Triple Explain what yo pressure what w	u undei	rstand by	[,] quali	ty of :	210 steam 1		turate	ed wa	ter is	throttle	ed to low	210

	h)	What happens to the boiling point of water and melting point of ice when pressure increases?						
	i)	Out of all the laws of thermodynamic which one represents the conservation of						
	j) ₂₁₀	energy? Define volumetric efficiency of a reciprocating air compressor. 210 210		210				
Q3	a)	<u>Part – B (Answer any four questions)</u> 2 Kg of air expands in a piston cylinder device at constant pressure. The work output is 40 kJ. What is the change in temperature if Cp = $1.005 \text{ kJ/kg}^{\circ}$ C and Cv = $0.72 \text{ kJ/kg}^{\circ}$ C.	(10)					
	b)	State and explain Zeroth Law of Thermodynamics. Which property does it describe?	(5)					
Q4	a) ₁₀	Apply SFEE to (i) Compressure (ii) Nozzle (iii) Turbine and (iv) Boiler. (Neglect potential energy in all the ⁰ C cases)	(10)	210				
	b)	2 kg of air (Cp = $1.005 \text{ kJ/kg}^{\circ}\text{C}$) at 20° C enters into a compressor and leaves at 80° C. If the heat rejected is 50 kJ. What is the work input to the compressor?						
Q5	a)	Steam at 10 bar and 200 0 C is expanded isentropic ally to 0.2 bar in a turbine. Calculate the work output.	(10)					
	b) 210	Define pure substance and critical point. What happens to the latent heat of vaporization, when pressure is increased? 210 210 210 210	(5)	210				
Q6	a)	Air at 27° C and 1 bar is compressed at constant volume to 4 bar. Then it is expanded isothermally to 1 bar. Finally it is brought back to its initial state by a constant pressure process. Find out the efficiency of the cycle and the work output (take Cp = 1.005 kJ/kg $^{\circ}$ C and Cv = 0.72 kJ/kg $^{\circ}$ C).	(10)					
	b)	Explain what you understand by PMM1. Prove that internal energy is a property of the system.	(5)					
Q7	210 a)	State and prove the equivalence of Kelvin-Plank and Clausius statement of second law of thermodynamic.	(10)	210				
	b)	An inventor claims to have developed an engine which delivers 50 kJ of work by observing 100 kJ of heat while working between 300 K and 500K respectively. Justify his claim.	(5)					
Q8	a) 210	i)Heat exchange ii)Work_done	(10)	210				
	b)	Take Cp = 1.005 kJ/kg ⁰ C and Cv = 0.72 kJ/kg ⁰ C Explain the working principle of manometers.	(5)					
Q9	a)	A refrigerator works between 250 K and 300 K. Its COP is 75% of the maximum possible value. The following data refer to the refrigerator.	(10)					
	210	Heat enters through insulation = 10 kJ per day:10210210Number of time the door is opened = 30 per dayHeat leakage during door opening = 2 kJ40Average amount of food stock stored = 50 kgHeat generated by the food stock = 0.1 kJ/kg10Electric Tariff = Rs. 4 per unit of electricity.Estimate the monthly electric bill.		210				
	b) 210	Explain the important components of steam power plant	(5)	210				