Registra	tion No:							
Total No 210	umber of Pag	es: 03	210	21		210	210	<u>B.Tech</u> 15BS110
		1	st Semeste	er Back Exa	aminatio	n: 2017-18		
		_		Physi				
							TRICAL, ETC	, IEE, IT,
MANUT	ECH, MECH,	MINERAL	, MINING,	•	•	-E		
210	210		210	Time: 3 Max Mai		210	210	210
				Q.CODE				
	A	nswer Part	t-A which	-		any four from	Part-B.	
				-	-	n indicate mar		
	Part-A (Ans	wer all que	estions)					
210	210		210	21		210	210	21 (2 x 10)
Q1 a)	Select the In simple h				•	um at		(2 x 10)
aj				0,		ly position betw	ween	
	extreme ar	•	• •	-				
b)			•			represented b	y x=Asinωt	
-	at time t o				-	•		
210 C)	What shou	ld be the pa	ath differe	ence betwe	en two d	oherent wave	s of 210	21
	wavelengtl							
	.,	i) (2N+1)λ	(iii) (21			f the above		
d)		•			waves o	originating fror	n two	
	consecutiv (i)0 (ii)	e Fresnei s π/2 (iii)	•					
e)	., .,	• • •	. ,		ase of Fi	resnel's diffrac	tion?	
210	,,	ii) Spherica					210	21
f)	., .	• •				the polarizing	angle for this	
	glass surfa	ce?						
	., .	, ,	, ,	iv) 58°				
g)	-				plane is			
۲.	(i)3 (ii) Volocity of	• •	• • •					
h) 210	,	(ii) c=Vµ₀/ ⁻			(iv) c = 1	ปน. ธ. ²¹⁰	210	2
i)						vµ₀e₀ on be accelera	ated so that	
-,	-	lie wavelen						
	-		-			iv) 4.98x10 ⁻³ V		
j)	Name a ph	enomenon	where en	ergy is con	verted ir	nto matter.		
	(i)Comptor		(ii) phot	toelectric e	effect	(iii) pair pr	oduction	
210	(iv) Radioa	ctive decay	210	21		210	210	21
Q2	Answer the	following	question	. .				(2 x 10)
a)		-	-		armonic	oscillation? Wi	rite its	(2 X 10)
3	application	=	Streamy					
b)	• •		er damped	l, over dan	nped and	l critically dam	ped	
	harmonic o	-				-		
	210		210	21		210	210	21

				<u> </u>
210	c) d) e) f) g) h) i)	What are the conditions for sustained interference? Write few differences between interference and diffraction. Define optical rotation and write its unit. State Gauss law in electrostatic field. Write its integral and differential form. State Stoke's theorem. 210 210 210 210 210 210 Show that vector $\mathbf{A}=(x+3y)\mathbf{i} + (y+az)\mathbf{j} + (x+az)\mathbf{k}$ is solenoidal. What is the need of Quantum mechanics? What is quantum mechanical tunneling?		210
		Part-B (Answer any four questions)		
Q3 ⁰	a)	A damped oscillator is "subjected to a damping force" proportional to" its velocity. Set up the differential equation of the oscillator. Discuss under damped oscillation. Explain logarithmic decrement.	(5)	210
	b)	The time period of simple harmonic oscillator is 4s. It is subjected to a damping force proportional to its speed with damping co-efficient 0.1/s. Find the time period and logarithmic decrement when subjected to damping	(5)	
210	c)	forces. Differentiate between progressive and stationary wave. ²¹⁰ ²¹⁰ ²¹⁰ 210	(5)	210
Q4	a)	Give the theory of Newton's rings and how to determine the refractive index	(5)	
		of transparent liquid using it.		
	b)	A source of light emitting two wavelengths $\lambda_1{=}6000~\text{A}^\circ$ and $\lambda_2{=}4500~\text{A}^\circ$ is used	(5)	
210		for Newton's rings. It is found that the n th dark ring due to λ_1 coincides with		210
		(n+1)^th dark ring for $\lambda_2.$ If the radius of curvature of the convex surface is 100		
		cm, find the diameter of nth dark ring for λ_2 .		
210	c)	A slit illuminated by a monochromatic light is placed at a distance of 10 cm from a biprism of refractive index 1.5 and base angle 2°. If the distance between two dark fringes is 0.18 mm, as observed on a screen placed at a distance of 1 m from the biprism. Find the wavelength of light.	(5)	210
Q5	a)	Write some similarities and dissimilarities between zone plate and convex	(5)	
		lens.		
210	b)	A plane diffraction grating of width 2.5 cm has 1500 rulings. Monochromatic light of wavelength 5893 A° is incident normally on it. Find the angle at which second order principal maximum occurs.	(5)	210
	c)	In Fraunhofer diffraction due to single slit, obtain the conditions for principal maxima, secondary maxima and minima. Show the intensity distribution curve graphically in this diffraction pattern.	(5)	
Q6	a)	Explain the construction and working of Nichol prism with suitable diagram.	(5)	210
210	b) c)	Distinguish between e-ray and o-ray. The refractive indices of a double refracting material for o-ray and e-rays for wavelength, EEOO A ^o are 1, E80 and 1, E04 respectively. Calculate the required	(5) (5)	210

c) The refractive indices of a double refracting material for o-ray and e-rays for wavelength, 5500 A^o are 1.588 and 1.594 respectively. Calculate the required thickness of the material for, (i) half wave plate (ii) quarter wave plate.

210

Q7	a)	With the help of Gauss divergence theorem, show that the volume of a (5)
		sphere is $\pi d^3/6$, where d is the diameter of the sphere.
210	b)	Derive electromagnetic wave equations in conducting medium and write the dissipative terms. 210 210 210 210 210 210 (5)
2.0	c)	Distinguish conduction current and displacement current. (5)
Q8	a)	Define Poynting vector. Deduce Poynting theorem for the flow of energy in an (5) electromagnetic field.
	b)	State Heisenberg's uncertainty principle and using it show that electrons (5) cannot reside inside a nucleus.
210	c)	Define group velocity and find a relation between group velocity and phase (5) velocity.
Q9	a)	The probability that a system can be in the states represented by eigen (5) functions ψ_1 , ψ_2 , ψ_3 are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{3}$ respectively. Write the wave function for the system. If the energy eigen values for the given states are 2 eV, 3 eV and 4
210		eV respectively, find the energy expectation value. (5)
	b)	Write the Schrodinger's equation for an infinitely deep one dimensional potential well and find expression for the wave function and energy of the
	c)	(5) Calculate the expectation value of x-component of momentum of a free particle in a box of length l, $\Psi=V(2/I)$ [Sin (n π x/I)]
		210 210 210 210 210