Registration No:											
Total Number of Pages: 02								B.Tech			
1st Semester Regular / Back Examination 2017-18 APPLIED MATHEMATICS-I BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, FAT, IEE, IT, MANUTECH, MECH, METTA, MINERAL, MINING, MME, PE, PLASTIC, PT, TEXTILE											
210	Λnc	210	n No 1 a	210	Max Q.C	ne: 3 Hou Marks: ODE: B7	100 733	210	any fou	210 ur from t	210
Answer Question No.1 and 2 which are compulsory and any four from the rest. The figures in the right hand margin indicate marks.											
Q1	a) b)	Answer the fi The Asympto a) n points (b) The number of a) Atleast one	te of a n'tl b) n(n-1) p of asympte	h degre oints otes of	ee curv (c) n(r a curv	ve cuts the n-2) points ve of n'th c	e curve i (d) No degree is	nto one 🔏	ll up typ	210	(2 x 10)
040	c) d)	The sum of o $\frac{d^2}{dx^2}(y'' + 1) +$ a) 2 (b) 3 Let A = $[a_{IJ}]$	rder and c 2y' = 0 is (c) 4 (d) be a 201	degree () 5 7× 20 ²	of the	differentia	al equation a_{ij}	on $= lpha$ for			
210	e) f)	a) $x^{2015}(x-2)$ Let $A^* = A^{-1}$ a) $\lambda = \pm 1$ (b) If Trace(A)=3 matrix, Is equ	017 α) (b); Where A (b) $\lambda = \pm i$ 3 and Traval to	$\begin{array}{l} x^{2016} \\ * = (\overline{A}) \\ \text{(c) } \lambda \\ \text{ce(P)=} \end{array}$	$(x - 20)^T$ The $ = 1$	n eigen va (d) λ=±2	alues of	A are			210
210	g) h)	a)2 (b) 4 (b) 4 (c) The Radius of a) $2\sqrt{2}$ (b) 3 Let $p_n(x)$ be a) 0 (b) 1	of curvatur B√2 (c) the Legen	e of the 0 ²¹⁰ (d) dre po	None lynomi	al then p_n^\prime	-	nt (0 , 1	I) is	210	210
210	i) j)	Let $A = [a_{IJ}]$ independent a) n -1 (b) n What is the ir a) x^2y (b) xy	be a $n \times n$ solutions $(-r)$ (c) n	matrix of the $n + r$ factor	such nomog (d) n - of (2y	that rank eneous sy $r + 1$	stem of	equati	ons Ax :		210
Q2	a)	Answer the fi	_	-					1] 1 with	respect to	(2 x 10)
210	b) c) d) e) f)	the eigenvalue Find the Radi Find the Radi Solve (x^3D^3 - What is the ir Write down that attain a mining	te 1? Sus of curvitus of control $-3x^2D^2 + 3x^2D^2 + 3$	vature for the vergen for the contractor ge sufers.	for the ce of \sum of $y' = 0$ of $y' + 0$ ficient	pedal cur $\sum_{1}^{\infty} 5^{n} x^{n+2}$ 0 ? p(x)y = 0 conditions	ve $p^2 =$? $q(x)y^n;$ s for a fu	ar 210 n≠ 0,1 unction	? of two v	²¹⁰ /ariable to	210
	g)	Solve the ord	ınary diffe	rential	equati	on (D + 1	((D-2)	y = 0	$D; D = \frac{a}{dx}$	- :	

- **h)** Find the asymptotes to the curve $x^4 + y^4 + x^2y + xy^2 = 0$ which are parallel to the axis?
- i) Define Similar Matrices.
- j) Let A = $[a_{IJ}]$ be a 3×3 matrix such that det(A I) = 0 ,Where I be a 3×3 identity matrix. If Trace(A) = 13, det(A) = 36 Then find the sum of the square of the eigenvalues?
- Q3 a) Find all the asymptotes of the curve $4x^4 13x^2y^2 + 9y^4 + 32yx^2 42y^3 20x^2 + 74y^2 + 16 = 0$
 - **b)** Find the radius of curvature for the curve $r = a(1 \cos \theta)$ (5)
- Q4 a) Find the extrema of the function $f(x,y) = x^3y^2(1-x-y)$ (10)
 - **b)** Expand $f(x, y) = (2x + y)^2$ about the point (x, y) = (1,1) by the Taylor series method. (5)
- **Q5** a) Using method of variation of parameter solve $x^2y'' + xy' y = x^2e^x$? (10) b) Find the second linear independent solution of xy'' (x + 1)y' + y = 0 (5)
- While one solution is e^x ?
- Q6 a) Find the series solution of $y'' + xy' + x^2y = 0$ about x = 0? (10)

 Prove that $np_n(x) = xp'_n(x) p'_{n-1}(x)$; where $p_n(x)$ are the Legendre polynomial.
- **Q7** a) Show that $np_n(x) = (2n-1)xp_{n-1}(x) (n-1)p_{n-2}(x)$; $n \ge 2$? **(10)** b) Prove that $\int_{-1}^1 p_m(x)p_n(x)dx = 0$ if $m \ne n$?
- Q8 a) Find eigenvalue and eigenvector of $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 4^{10} & 2 & 8 \end{bmatrix}$? (10)
 - b) Prove that product of two unitary matrix is unitary? (5)
- Q9 a) Solve $(1+y^2)dx = (\tan^{-1} y x) dy$ b) Find the current at any time t>0 in a circuit having in series a constant (5)
 - electromotive force 40 v ,a resistor 10Ω and an inductor 0.2H given that initial current is zero.

210 210 210 210 210 210

210 210 210 210 210 210 210 210