| Registration No: | | | | | | | | | | | | |--|----------------------------|--|---|---|--|--|------------------------------------|------------------------|-----------------------|-------------------------------|----------| | Total Number of Pages: 02 | | | | | | | | B.Tech | | | | | 1st Semester Regular / Back Examination 2017-18 APPLIED MATHEMATICS-I BRANCH: AEIE, AERO, AUTO, BIOMED, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, FAT, IEE, IT, MANUTECH, MECH, METTA, MINERAL, MINING, MME, PE, PLASTIC, PT, TEXTILE | | | | | | | | | | | | | 210 | Λnc | 210 | n No 1 a | 210 | Max
Q.C | ne: 3 Hou
Marks:
ODE: B7 | 100
733 | 210 | any fou | 210
ur from t | 210 | | Answer Question No.1 and 2 which are compulsory and any four from the rest. The figures in the right hand margin indicate marks. | | | | | | | | | | | | | Q1 | a)
b) | Answer the fi
The Asympto
a) n points (b)
The number of
a) Atleast one | te of a n'tl
b) n(n-1) p
of asympte | h degre
oints
otes of | ee curv
(c) n(r
a curv | ve cuts the
n-2) points
ve of n'th c | e curve i
(d) No
degree is | nto
one 🔏 | ll up typ | 210 | (2 x 10) | | 040 | c)
d) | The sum of o $\frac{d^2}{dx^2}(y'' + 1) +$
a) 2 (b) 3
Let A = $[a_{IJ}]$ | rder and c
2y' = 0 is
(c) 4 (d)
be a 201 | degree
()
5
7× 20 ² | of the | differentia | al equation a_{ij} | on $= lpha$ for | | | | | 210 | e)
f) | a) $x^{2015}(x-2)$
Let $A^* = A^{-1}$
a) $\lambda = \pm 1$ (b)
If Trace(A)=3
matrix, Is equ | 017 α) (b); Where A (b) $\lambda = \pm i$ 3 and Traval to | $\begin{array}{l} x^{2016} \\ * = (\overline{A}) \\ \text{(c) } \lambda \\ \text{ce(P)=} \end{array}$ | $(x - 20)^T$ The $ = 1$ | n eigen va
(d) λ=±2 | alues of | A are | | | 210 | | 210 | g)
h) | a)2 (b) 4 (b) 4 (c) The Radius of a) $2\sqrt{2}$ (b) 3 Let $p_n(x)$ be a) 0 (b) 1 | of curvatur
B√2 (c)
the Legen | e of the
0 ²¹⁰ (d)
dre po | None
lynomi | al then p_n^\prime | - | nt (0 , 1 | I) is | 210 | 210 | | 210 | i)
j) | Let $A = [a_{IJ}]$ independent a) n -1 (b) n
What is the ir
a) x^2y (b) xy | be a $n \times n$ solutions $(-r)$ (c) n | matrix of the $n + r$ factor | such
nomog
(d) n -
of (2y | that rank eneous sy $r + 1$ | stem of | equati | ons Ax : | | 210 | | Q2 | a) | Answer the fi | _ | - | | | | | 1]
1 with | respect to | (2 x 10) | | 210 | b)
c)
d)
e)
f) | the eigenvalue Find the Radi Find the Radi Solve (x^3D^3 - What is the ir Write down that attain a mining | te 1? Sus of curvitus of control $-3x^2D^2 + 3x^2D^2 3$ | vature for the vergen for the contractor ge sufers. | for the ce of \sum of $y' = 0$ of $y' + 0$ ficient | pedal cur
$\sum_{1}^{\infty} 5^{n} x^{n+2}$
0 ?
p(x)y = 0
conditions | ve $p^2 =$? $q(x)y^n;$ s for a fu | ar 210 n≠ 0,1 unction | ? of two v | ²¹⁰
/ariable to | 210 | | | g) | Solve the ord | ınary diffe | rential | equati | on (D + 1 | ((D-2) | y = 0 | $D; D = \frac{a}{dx}$ | -
: | | - **h)** Find the asymptotes to the curve $x^4 + y^4 + x^2y + xy^2 = 0$ which are parallel to the axis? - i) Define Similar Matrices. - j) Let A = $[a_{IJ}]$ be a 3×3 matrix such that det(A I) = 0 ,Where I be a 3×3 identity matrix. If Trace(A) = 13, det(A) = 36 Then find the sum of the square of the eigenvalues? - Q3 a) Find all the asymptotes of the curve $4x^4 13x^2y^2 + 9y^4 + 32yx^2 42y^3 20x^2 + 74y^2 + 16 = 0$ - **b)** Find the radius of curvature for the curve $r = a(1 \cos \theta)$ (5) - Q4 a) Find the extrema of the function $f(x,y) = x^3y^2(1-x-y)$ (10) - **b)** Expand $f(x, y) = (2x + y)^2$ about the point (x, y) = (1,1) by the Taylor series method. (5) - **Q5** a) Using method of variation of parameter solve $x^2y'' + xy' y = x^2e^x$? (10) b) Find the second linear independent solution of xy'' (x + 1)y' + y = 0 (5) - While one solution is e^x ? - Q6 a) Find the series solution of $y'' + xy' + x^2y = 0$ about x = 0? (10) Prove that $np_n(x) = xp'_n(x) p'_{n-1}(x)$; where $p_n(x)$ are the Legendre polynomial. - **Q7** a) Show that $np_n(x) = (2n-1)xp_{n-1}(x) (n-1)p_{n-2}(x)$; $n \ge 2$? **(10)** b) Prove that $\int_{-1}^1 p_m(x)p_n(x)dx = 0$ if $m \ne n$? - Q8 a) Find eigenvalue and eigenvector of $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 4^{10} & 2 & 8 \end{bmatrix}$? (10) - b) Prove that product of two unitary matrix is unitary? (5) - Q9 a) Solve $(1+y^2)dx = (\tan^{-1} y x) dy$ b) Find the current at any time t>0 in a circuit having in series a constant (5) - electromotive force 40 v ,a resistor 10Ω and an inductor 0.2H given that initial current is zero. 210 210 210 210 210 210 210 210 210 210 210 210 210 210