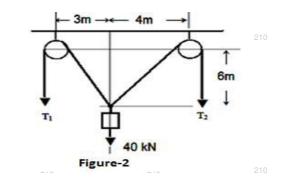
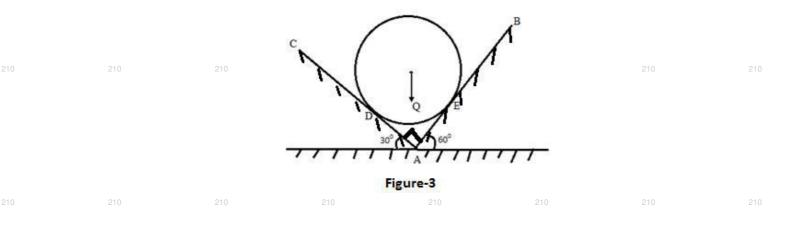
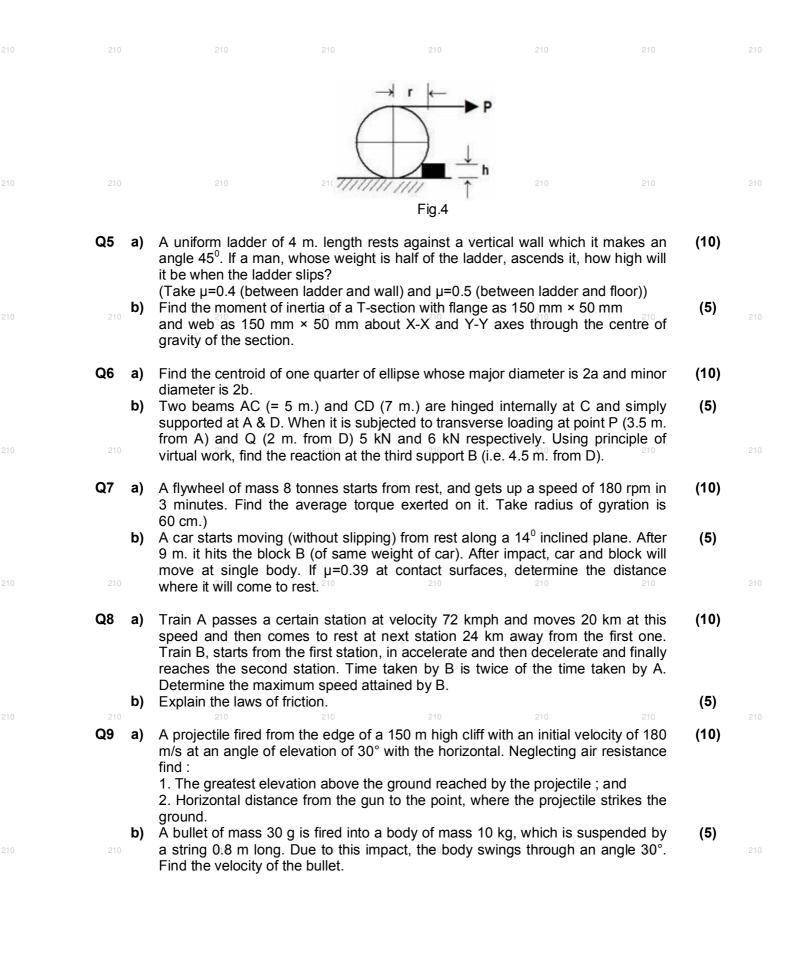

Tota	al Nu	umber of Pages	: 03				B.Tec
			1 st Semester B	ook Examinati	2047 49	15	5BE21
010		010			Dn 2017-16	040	
210		210	210	IE, AUTO, CHE	M, CIVIL,	210	
(CSE	, ECE, EEE, EIE	, ELECTRICAL,			IE, PE, TEX	TILE
			Tir	ne : 3 Hours			
				x Marks : 100			
				CODE : B926			
	Ans		Io.1 and 2 which				'est.
210		The fi	gures in the rig	ht hand margin	indicate mark	S. 210	
Q1		Answer the foll	owing questions:	multiple type or	r dash fill un tvn	e	(2 x 1
Q I	a)		the forces acting				(2 ~ 1
	/	equilibrium	and refere dowing		e, a.e. a.e ace,		
		provided the force	es are				
		(a) Concurrent (, ,				
			d) Unlike parallel				
210	b)		ravity of hemisph		stance offor	m its base	
210	C)		the vertical radius inertia of a circu	•		ven by the	
	0)	relation			ameter (u) is gi	ven by the	
	d)		 nertia of a triangul	ar section of base	e (b) and height (h) about an	
	,		.g. and parallel to				
	e)		avity of an equilate				
		of the three side					
	f)		orem is applicable		-		
210		(a) Coplanar for		(b) Concurrent		210	
	a)		l concurrent forces ig on a body of m			accoloration	
	g)	(α) is	• •				
	h)	One watt is equa					
	,	(a) 0.1 J/s (b) 1					
		(c) 10 J/s (d) 1	00 J/s				
	i)	The potential en	ergy of a mass (m)			tres is	
210		(a) mh newtons		210	210	210	
	j)		(d) none of these inertia (I) of a pull		n the acceleratio	n of a hody	
	"		nd passing over it i			n or a body	
		•	emains the same	-			
		(c) Doubled (d) N	None of these				
~~				•			<i>(</i>) <i>(</i>)
Q2	2)		owing questions:	•	-		(2 x 1
210	a) b)	State Varignon's	veen 'Resultant' a	na Equimorant	210	210	
	c)		of transmissibility				
	d)		ly Diagram (FBD)	and draw FBD	of Hinged, Fixe	ed & Roller	
	,	support.					
	e)		orem with a sketch				
	f)		ons of equilibrium of	of a coplanar syst	em of forces		
	g)	Differentiate trus	s and trame.				


210	210	210	210	210	210	210	210

- h) Explain D-Alembert principle.
- i) Explain why a man feels weightless while coming down in a elevator?
- j) What are impulse and momentum?


Q3 a) Two identical rollers each of weight 50N are supported by an inclined plane and a vertical wall as shown in figure-1. Find the reactions at the points of supports A, B, and C.

b) A weight of 40 kN is suspended by two cables as shown in the figure-2. Find the tensions T₁ & T₂ in the cables.
(5)



Q4 a) A ball of weight Q= 53.4 N rest in a right-angle trough, as shown in figure- 3. (10) Determine reactions at D & E if all surface are perfectly smooth.

b) A roller of weight 500 N has a radius of 120 mm and is pulled over a step of height 60 mm by a horizontal force P. Find magnitudes of P to just start the roller over the step.

210

