	210	gistration no: 210 210 210 210 210 210 210 210	210
Tota	l Nu	umber of Pages: 02	<u>B.Tech</u> BE2104
BR		1 ST Semester Back Examination 2017-18 MECHANICS CH: AEIE, AERO, AUTO, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, F IEE, IT, MECH, MINING, MME, PE, PLASTIC, TEXTILE Time: 3 Hours Max Marks: 70 Q.CODE: B1088 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.	FASHION, 210
Q1	210 a)	Answer the following questions:	(2 x 10) 210
	b) c)	State Varignon's theorem. Using Papus theorem find the area of circle.	
	d) e) f)	State laws of coulomb friction of sliding bodies. Define principle of transmissibility State the principle of concentration of momentum	
	f) g)º	State the principle of conservation of momentum. If the speed of a particle along a curved path is constant, what is the value of ²¹⁰ tangential acceleration?	210
	h) i) j)	•	
2	a)	Two roller of weights "P" = 222.5N and "Q" = 445N are connected by a rigid bar at its ends & supported inside a circular ring in a vertical plane as shown in figure.	(5)
	210		210
		P Q Q	
	210		210
	210	210 210 210 210 210	210

height 60 mm by a horizontal force P. Find magnitudes of P to just start the roller over the step.

				→ r	←					
210		210	210		► P ■ ↓ ↑ h	210	210		210	
210	Q3	210	 angle 45⁰. If a man, whose weight is half of the ladder, ascends it, how high will it be when the ladder slips? (Take μ=0.4 (between ladder and wall) and μ=0.5 (between ladder and floor)) A quarter of circle area is removed from square. Find out the centroid of remaining 							
			area. The radius of the circle	e is same as the	side of square.					
	Q4	a)	A bullet is fired upward at ar hill. It strikes the target, which	ch is 80 m lower	than P. The initia	al velocity of bulle	et is	(5)		
210		210 b)	100 m/sec. calculate the actual velocity with which the bullet strikes the target. ²¹⁰ Train A passes a certain station at velocity 72 kmph and moves 20 km at this speed and then comes to rest at next station 24 km away from the first one. Train B, starts from the first station, in accelerate and then decelerate and finally reaches the second station. Time taken by B is twice of the time taken by A. Determine the maximum speed attained by B							
210	Q5	 a) A bullet of mass 30 gm is fired into a body of mass 10 kg, which is suspended by a string 0.8 m.2long. Due to this impact, the body swings through an angle 30°. Find the initial velocity of bullet. b) State and explain the principle of virtual work with an example. 								
210	Q6	a) b) 210	Find the maximum constant speed of a car can move (without skidding) around a curve. (Take R=350 meters and µ=0.3 (between tyre & road)) A flywheel of mass 8 tonnes starts from rest, and gets up a speed of 180 rpm in 3 minutes. Find the average torque exerted on it. Take radius of gyration is 60 cm.)							
	Q7 Find the moment of inertia of a T-section with flange as 200 mm × 60 mm and web as 200 mm × 60 mm about X-X and Y-Y axes through the centre of gravity of the section.									
210	Q8	a) b)⁰ c) d)	Write short answer on any Parallel axis theorem Co-efficient of restitution D-Alembert principle Radius of gyration	210	210	210	210	(5 x 2)	210	
210		210	210	210	210	210	210		210	

210