210		210	210	210	210	210		
Reg	istra	tion No:						
Tota	al Nu	mber of Pages:	02				B.Tech	
		3 rd Se	emester Regula	r / Back Exam	nination 2017-		PET3I001	
210		210	Semico	nductor Devid	Ces 210	210		
				me: 3 Hours	0			
				x Marks: 100 CODE: B983				
	Ans	wer Question No			ory and any fo	our from the	rest.	
		The fig	ures in the rig	nt hand marging	n indicate ma	rks.		
Q1 10		Answer the follow					(2 x 10)	
	a) b)	The bandgap ene If the semiconduct	rgy of Si is tor is doped with	- and the bandg N⊳=1x10 ¹⁶ /cm ³ .	ap energy of Ge the materials be	ecomes		
	~,	and if doped with	N _A =1x10 ¹⁶ /cm ³ , 1	he material beco	omes			
	C)	Addition of N _D ir towards			•••	U U		
		energy is moving						
		The dopants are						
210	e)	concentration of m Complete elevation			210 ate to conducti	on band is		
		called						
	f)	There are carrier mobility.	and	mechanisms in	a semiconducto	or affect the		
	g)	The drift current d	lensity due to ele	ctrons is	and the diffu	sion current		
	b)	density due to electron			sistivity is			
210		The unit of conduct Typical electron n						
		for Ge is						
	j)	BJT is a	device and N	IOSFET is a	device.			
Q2	-	Answer the follow			type		(2 x 10)	
	a) b)	Define work functi What do mean by			v carriers ?			
	c)	Consider an N-typ	e Si semiconduc	tor at T=300K in		/cm ³ , N _A =0,		
210	d)	$n_i = 1.5 \times 10^{10} \text{ cm}^3$. What do mean by			210	210		
	e)	Plot the variation of			d temperature.			
	f) a)	Write down the rel Sketch the drift ve				ity?		
	g) h)	Why are the elect				al in thermal		
	:)	equilibrium ?	optic l borrior doo	e e e e e e e e e e e e e e e e e e e	and bias ad DN is	unation 2		
210	i) j)	Why does the pote Explain the physic						
Q3	a)	Derive the equation	on for the therma	l equilibrium cor	ncentration of el	ectrons (n ₀)	(10)	
		and thermal equili	brium concentrat	ion of holes (p ₀).				
	b)	If the fermi energy thermal equilibrium					(5)	
		$=1.04 \times 10^{19} / \text{cm}^3 \text{ fo}$						
Q4	a)	Derive the Einstei	n relation?				(10)	
210	b)	A particular intrins	sic semiconducto				(5)	
		and 5 ohm-cm				مالكن بيدانه م		

Q5	a) b)	Derive the built in potential barrier for a PN junction diode ? Calculate, the width of the space charge region in a PN junction when a reverse bias voltage of 5 V is applied. Assuming Si PN junction at T=300K with doping concentrations $N_A = 10^{16}/cm^3$ and $N_D = 10^{15}/cm^3$, $n_i = 1.5 \times 10^{10}/cm^3$.	(10) (5)	
Q6 ¹	a) b)	Derive the ideal current-voltage relationship for a PN junction diode? ²¹⁰ Differentiate between shot diode and long diode ?	(10) (5)	210
Q7	a)	Describe the time delay factors in the frequency limitation of the bipolar transistor?	(10)	
21(-	A Si NPN transistor at T=300K is given assuming the following parameters. $I_E=1mA$, $X_B=0.5\mu$ m, $X_C=2.4\mu$ m, $C_{\mu}=0.1\mu$ F, $C_{je}=1$ pF, $D_n=25$ cm ² /sec, $r_c=20\Omega$, $C_s=0.1$ pF. Calculate the emitter to collector transit time and cut-off frequency.	(5)	210
Q8	a)	Define the threshold voltage. Derive the threshold voltage of MOSFET?	(10)	
	b)	The parameters of an n-channel MOSFET are μ_n =650cm ² /v-s, t _{ox} =200Å, (W/L) =50, and V _t =0.40 V. If the transistor is biased in the saturation region find the drain current for Vgs=1.2 V.	(5)	
Q9	a)	Discuss with diagram the C-V characteristics of an MOS capacitor under high and low frequency conditions.	(10)	
210	b)		(5)	210

 t_{ox} =450 Å. The silicon doping is ,N_A=2x10¹⁶/cm³ and the flat band voltage, V_{FB}=-1 V. determine the fixed oxide charges Q ss.

210 210 210 210 210 210 210 210 2