Regi	istrat	tion No:															
Tota	l Nui	mber of Pag	jes: 0)2											D.C.	B.Ted	
210	Å	210 Answer que	EC	Phy BF E, E	rsics RANC EE, E	of S CH: / EIE, E Tir Ma Q.	emic AEIE ELEC ne : x Ma Code s con	ondi , BIC TRIC 3 Ho irks : e : Bi npul:	uctor TEC CAL, urs : 70 378 sory		ices SE, , IEE any f	, IT ive f		210 the re		GP12 (21
Q1	a) b) c)	How is density of states related to energy in 3-dimensional metal? What is the difference between direct band gap semiconductor and indirect band gap semiconductor? Give examples of two materials for each case:										(2×10))				
210	d) e) f) g)	(a) indirect band gap semiconductor and (b) direct band gap semiconductor. What are the ways to make Ohmic contacts? Define common-emitter current gain and common-base current gain. Explain effective Richardson constant. Why is Schottky junction diode preferred over pn junction diode for high-frequency device application?										21					
210	i) j)	Define Flat-Band voltage and Threshold voltage for MOS capacitor. What do you mean by compensated semiconductors and compound semiconductor? How is reverse saturation current of a pn junction diode related to temperature?											21				
Q2		Show that in long pn junction diode, minority carrier concentration exponentially decreases with distance from edge of depletion region if low injection rate is assumed. Derive current-voltage relationship for ideal pn junction diode.										(5) (5)					
210 Q3	a) b)	Derive ambip Show that, at by using mind	olar tr	ransp njecti	ort ec	uatio te, an	n. nbipo	210	•		210		d be v	writter	1	(5) (5)	21
Q4 210	b)	Explain Sch proportionate effect. Show that the maximum ba that E =6.8 × 10 ⁴	e Sche rrier h	ated to ottkey neight	to pos y barr t is ar	ier lo ound	of ma werin 2 nm	aximu g is a n awa	m bai	rrier h	V ar	nd the	to So	tion of	/ f	(5) (5)	21
Q5	b)	Explain therm Derive formusemiconductor	ula fo	r cu	rrent	dens	ity d	ue to	flow			on f	rom	n-type	e	(3) (7)	21

Q6 210 Q7 Q8	a)b)a)b)b)	Derive formula for concentration of electron in conduction band for an intrinsic semiconductor at temperature T. Show that for intrinsic semiconductor, Fermi level lies around middle of band gap at room temperature. 210 210 210 210 210 210 210 21							
					ar oqumonum				
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	
210		210	210	210	210	210		210	