
Total	Number of Pa	ges: 03		•	•			•	•	•	J		B.Tech
210	210	8 rd Semes	210	NËTV RANC Ti Ma	VOR CH: E me: 3 x Ma	ack E KaTH LEC 3 Hou Irks: E: B8	EOR TRIC urs 100	Y	ion 2 210	017-	18	210	PEE3I10
A	nswer Questic Th	on No.1 a ne figures					-	-		-		rom th	ne rest.
210 Q1	Answer the	· ·	210	•		210	•		210			210	(2 x 10)
а	 A practical c a) a resistan b) a resistan c) a resistan d) none of th 	urrent sou ce in para ce in para ce in serie le mention	rce car llel with llel with es with ned	n also n an io n an io an ide	be re deal v deal c eal cu	oltage oltage urren rrent	ented e sou t sou sourc	as rce rce e					(,
b	•				-	-	then	the n		er of n	nesh		
210	equations th a) 2 b) 4 c) 6 d) 8					210			210			210	
С) If a resistor R _z between star, the resi	Y and Z to	form a	a delta									
210 d	<i>,</i>	$R_v + R_z)$ $R_v + R_z)$ $R_x + R_y + R_z)$ r of capac	210 itance	is?		210			210			210	
	a) capacitan b) resistance c) current so	9											
210 e	 d) inductance Reciprocity ⁻ resistance is a) Voltage b) Voltage o 	Theorem is changed				210 chang	ge in _		210	hen t	he	210	
f 210	a) (l ² _{max} R)/8 b) (l ² _{max} R)/4	ion of pow	/er (P ₁)	at lov	wer ha		wer fr	eque	ncy is	?		210	
g	 c) (I²_{max}R)/2 d) I²_{max}R The real par a) radian fre b) neper free 	quency	mplex	freque	ency i	s calle	ed?						
210 h	c) sampling d) angular fr	frequency equency	210 nce of	the in	ducto	210 r is?			210			210	
	c) 1/L d) L												

)	210	j)	terms between the highest and the lowest degree, unless? a) all odd terms are missing b) all even terms are missing c) all even or odd terms are missing d) all even and odd terms are missing The real parts of the driving point function Z (s) and Y (s) are? a) positive and zero b) positive c) zero d) positive or zero	2	210
	Q2		Answer the following questions: Short answer type (2	2 x 10)	
)	210	a) b) c)	A parallel RLC circuit has R=20K Ω , L=10mH and C=1 μ F. Compute its resonant frequency and Q . 210 210 210 210 210 210 210 210 210 210	2	210
		d)	The impulse response of a circuit is $h(t) = \frac{3}{L}e^{-\frac{R}{L}t}u(t)$. Find its step response.		
		e)	Derive the Q factor of anti-resonant circuit.		
)	210	f)	If $Z(s) = 0$ for $\sigma = 0$.condition satisfies for Foster second form of RL ²¹⁰	2	210
		g) h) i) j)	network. Then L_0 is present or absent? Explain. What is the Laplace Transform of a unit step function occurring at $t = a$? Describe the condition for reciprocity and symmetry of h - parameter Describe the steps of Norton's Theorem? With neat diagram Find the magnitude of the frequency when the drop across the capacitor in series RLC circuit is maximum.		
)	Q 3 ²¹⁰	a)	Define node and junction of an electric circuit.Using Nodal method analysis, find the current flowing in each branch of the following network as shown in Fig. 1. All resistances are in ohms.	(10)	210
)	210		$100 \angle 0^{\circ} \vee 0^{\uparrow} \\ 25 \\ 25 \\ 10 \\ 10 \\ 210 \\ 10 \\ 210 \\$	2	210
		b)	Fig. 1 Show the relationship between Bandwidth, Quality Factor and resonance frequency.	(5)	
)	210 Q4	a)	Obtain Y- and h- parameter, if the other parameters are given below	(10)	210
		b)	A=2, B= -1, C=3, and D= -2. Obtain Transmission Line parameter for the network as shown in Fig. 2.	(5)	
		,		()	
)	210		210 210 210	2	210
			v1 > v2		
			Fig. 2		
	210		210 210 210 210 210	2	

(10)

Q5 a) What do you mean by Fourier Transform and Fourierseries? Determine the Fourier Series for the SAW-TOOTH function. As shown in Fig 3.

21