
Total N	umber of Pag	0 : 201	2											B.Tech.
	uniber of Fa	Jes. 0.	5											PEI3I104
210	3 210	rd Sem	lest	210	NËTV RANC Ti Ma	VOR H: A me: 3 x Ma	ack I Kath EIE, 3 Hou Irks: E: Ba	EOR EIE, urs 100	Y	210 2	017-	18	210	2
Ans	wer Questio				whicl	n are	com	puls	-		-		rom th	ie rest.
210	210	e figu		210	•		210	•		210			210	2
Q1 a)	Answer the A practical cu a) a resistant b) a resistant c) a resistant d) none of th	urrent s ce in pa ce in pa ce in se ce in se e menti	ouro aralle aralle eries ione	ce car el with el with with d	n also n an io n an io an ide	be re deal v deal c eal cu	oltage voltage curren rrent	ented e sou t sou sourc	as rce rce e			-		(2 x 10)
b)	If there are 5					•		then	the n		r of n	nesh		
210	equations tha a) 2 b) 4 c) 6 d) 8						210			210			210	2-
c)	If a resistor R_z between N star, the resist	イ and Z	to f	orm a	a delta									
210 d)	a) $R_xR_y/(R_x+1)$ b) $R_xR_z/(R_x+1)$ c) $R_zR_y/(R_x+1)$ d) $(R_x+R_y)/(R_x+1)$ The dual pair a) capacitance b) resistance	R _v +R _z) R _v +R _z) _x +R _y +F of cap ce	R _z)	ance	is?		210			210			210	2
210	c) current so d) inductance			210			210			210			210	2
e)		heoren change	ed in	used				ge in _.			hen t	he		
f) 210	The expression $(l^2_{max}R)/8$ b) $(l^2_{max}R)/4$ c) $(l^2_{max}R)/2$ d) $l^2_{max}R$			210			210		reque	ncy is	?		210	2
g) 210	The real part a) radian freq b) neper freq c) sampling f d) angular fre	quency uency requen	су	210	reque	ency i	210 S Call	ea ?		210			210	2
h)	The transforr a) 1/sL b) sL c) 1/L d) L		ttano	ce of [•]		ducto	or is?							

)	210	j)	terms between the highest and the lowest degree, unless? a) all odd terms are missing b) all even terms are missing c) all even or odd terms are missing d) all even and odd terms are missing The real parts of the driving point function Z (s) and Y (s) are? a) positive and zero b) positive c) zero d) positive or zero	210
	Q2			x 10)
	210	a) b) c)	resonant frequency and Q. 210 210 210 210 210 210 210 210 210 210	210
		d)	The impulse response of a circuit is $h(t) = \frac{3}{L}e^{-\frac{R}{L}t}u(t)$. Find its step response.	
		e)	Derive the Q factor of anti-resonant circuit.	
	210	f) g)	If $Z(s) = 0$ for $\sigma = 0$.condition satisfies for Foster second form of RL network. Then L_0 is present or absent? Explain. What is the Laplace Transform of a unit step function occurring at $t = a$?	210
) h) j)	Describe the condition for reciprocity and symmetry of <i>h</i> - parameter Describe the steps of Norton's Theorem? With neat diagram Find the magnitude of the frequency when the drop across the capacitor in series RLC circuit is maximum.	
	Q3	a)	Define node and junction of an electric circuit.Using Nodal method analysis, find the current flowing in each branch of the following network as shown in Fig. 1. All resistances are in ohms.	(10) ²¹⁰
	210		$100 \angle 0^{\circ} \vee 0^{\uparrow} \\ 20 \\ 25 \\ 10 \\ 10 \\ 10 \\ 210 \\$	210
		b)	Fig. 1 Show the relationship between Bandwidth, Quality Factor and resonance frequency.	(5)
	210 Q4	a)		(10)
		b)	A=2, B= -1, C=3, and D= -2. Obtain Transmission Line parameter for the network as shown in Fig. 2.	(5)
		-		
	210		210 210 210 210 210	210
			Fig. 2	
	210		210 210 210 210 210	210

(10)

Q5 a) What do you mean by Fourier Transform and Fourierseries? Determine the Fourier Series for the SAW-TOOTH function. As shown in Fig 3.

21