
	Registr	ation No:]	
	Total N	umber of Pages	s: 03				B.Tech.
		ord o	Somostor Bog	ular / Book Ex	amination 2017-	10	PEL3I101
	210	210	210 NË	TWORK THEO BRANCH: EEI Time: 3 Hours Max Marks: 10 Q.CODE: B873	DRY 210 E S O	210	210
	Ans			-	ulsory and any for rgin indicate ma		e rest.
	210	210	210	210	210	210	210
	Q1 a)	A practical curre a) a resistance i b) a resistance i c) a resistance i d) none of the n	ent source can a in parallel with a in parallel with a in series with an nentioned	lso be represent n ideal voltage s n ideal current s ideal current so	ource ource urce		(2 x 10)
	b)			• .	en the number of n	nesh	
	210	a) 2 b) 4 c) 6 d) 8	an be formed ar		210	210	210
	C)		nd Z to form a de		nd Y, R_v between λ then after transform		
	210 d)	a) $R_xR_v/(R_x+R_v-b) R_xR_z/(R_x+R_v+c) R_zR_v/(R_x+R_v+d) (R_x+R_v)/(R_x+R_v+d) (R_x+R_v)/(R_x+R_v)/(R_x+R_v)/(R_x+R_v)$ The dual pair of a) capacitance b) resistance c) current sourc	·R _z) R _z) R _y +R _z) capacitance is?	210	210	210	210
	210	d) inductance	210	210	210	210	210
	e)	Reciprocity The	anged in the circ	•	in when t	he	
	f)	,	of power (P ₁) at	lower half powe	r frequency is?		
	210 g)	a) $(I_{max}^2 R)/8$ b) $(I_{max}^2 R)/4$ c) $(I_{max}^2 R)/2$ d) $I_{max}^2 R$ The real part of	the complex free	210	210	210	210
		a) radian freque b) neper freque c) sampling freq	ncy				
	210 h)	d) angular frequ The transform a a) 1/sL b) sL c) 1/L	iency ²¹⁰	210 inductor is?	210	210	210
	i)	d) L The denominato	or polynomial in a	a transfer functio	on may not have ar	w miesing	
			-		-		
U	210	210	210	210	210	210	210

)	210	j)	terms between the highest and the lowest degree, unless? a) all odd terms are missing b) all even terms are missing c) all even or odd terms are missing d) all even and odd terms are missing The real parts of the driving point function Z (s) and Y (s) are? a) positive and zero b) positive c) zero d) positive or zero	210
	Q2			x 10)
	210	a) b) c)	resonant frequency and Q. 210 210 210 210 210 210 210 210 210 210	210
		d)	The impulse response of a circuit is $h(t) = \frac{3}{L}e^{-\frac{R}{L}t}u(t)$. Find its step response.	
		e)	Derive the Q factor of anti-resonant circuit.	
	210	f) g)	If $Z(s) = 0$ for $\sigma = 0$.condition satisfies for Foster second form of RL network. Then L_0 is present or absent? Explain. What is the Laplace Transform of a unit step function occurring at $t = a$?	210
) h) j)	Describe the condition for reciprocity and symmetry of <i>h</i> - parameter Describe the steps of Norton's Theorem? With neat diagram Find the magnitude of the frequency when the drop across the capacitor in series RLC circuit is maximum.	
	Q3	a)	Define node and junction of an electric circuit.Using Nodal method analysis, find the current flowing in each branch of the following network as shown in Fig. 1. All resistances are in ohms.	(10) ²¹⁰
	210		$100 \angle 0^{\circ} \vee 0^{\uparrow} \\ 20 \\ 25 \\ 10 \\ 10 \\ 10 \\ 210 \\$	210
		b)	Fig. 1 Show the relationship between Bandwidth, Quality Factor and resonance frequency.	(5)
	210 Q4	a)		(10)
		b)	A=2, B= -1, C=3, and D= -2. Obtain Transmission Line parameter for the network as shown in Fig. 2.	(5)
		-		
	210		210 210 210 210 210	210
			Fig. 2	
	210		210 210 210 210 210	210

(10)

Q5 a) What do you mean by Fourier Transform and Fourierseries? Determine the Fourier Series for the SAW-TOOTH function. As shown in Fig 3.

21