Registration No :					

Total Number of Pages: 03

B.Tech BEES2211

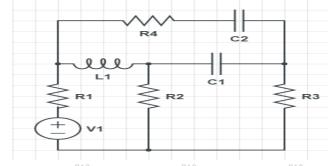
3rd Semester Back Examination 2017-18

Network Theory

210 210

BRANCH: AEIE, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, IEE, IT

Time: 3 Hours Max Marks: 70 Q.CODE: B1234

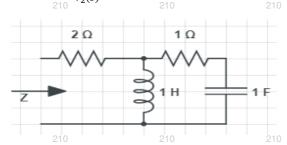

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

- a) Two coils are wound side by side on a paper tube. An emf of 0.25 V is induced in coil 1 when the flux linking it changes at the rate of 10^{-3} Wb/s. A current of 2A in coil 2 causes a flux of 10^{-5} Wb to link coil 1. What is the mutual inductance between the coils?
- b) What is Millman's theorem?
- c) Find the oriented graph and the corresponding tree of the network shown below in Fig. 1.


₂₁₀Fig. 1

I) Define time constant and its unit.

e) Determine the initial and final values of the current where

$$I(s) = \frac{0.42}{s(s^2 + 0.35s + 0.816)}$$

- f) What is Dirichlet conditions for Fourier series?
- g) Write the reciprocity and symmetry condition in h-parameter?
- h) Calculate the voltage transfer ratio $\frac{V_1(s)}{V_2(s)}$ of the network shown below in Fig. 2.

²¹⁰Fig. 2

- i) What is Routh-Hurwitz criterion of stability of network function?
- j) A parallel RLC circuit has inductance of 10Mh resistance of 4Ω . Find the value of the capacitance that will produce resonance frequency of 8kHz. Also calculate the Quality factor of the circuit.

(5)

(5)

(5)

(5)

(5)₂₁₀

(5)

Fig. 3

b) Determine the current through R_L in the circuit shown below in Fig. 4, using super position theorem

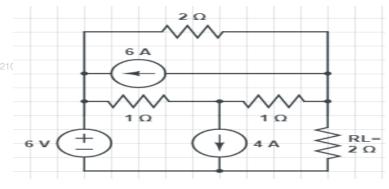
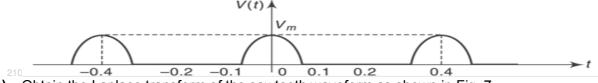
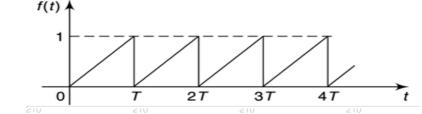
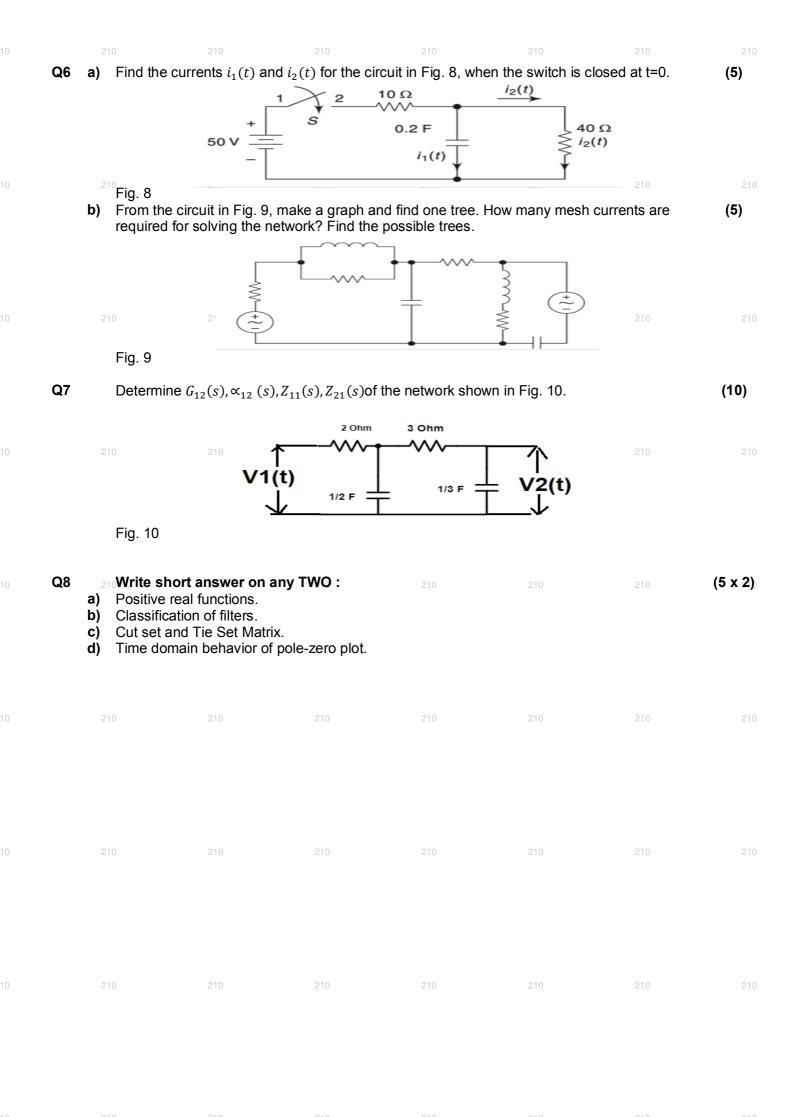


Fig. 4


Q3 a) Using Foster Form II, synthesis the function.

$$Y(s) = \frac{(s^2 + 5)(s^2 + 13)}{s(s^2 + 9)}$$


- Synthesize the function $Z(s) = \frac{4(s+1)(s+3)}{s(s+2)}$, using the Cauer Form I of realization.


Fig. 6.

- **b)** Check whether the polynomial $s_{210}^4 + 6s^3 + 2s^2 + s + 1$ is Hurwitz or not.
- **Q5** a) Determine the Fourier series of voltage response obtained at the output of a half-wave rectifier shown in the Fig. 7. Plot the discrete spectrum of the waveform.

b) Obtain the Laplace transform of the sawtooth waveform as shown in Fig. 7.

