Total Numb	er of Pages: 0	2			B.Tec
	·				PBT3I1
210	3 ^{ra} Sen		/ Back Examina OBIOLOGY	tion 2017-18	210
			H(S): BIOTECH		
			e: 3 Hours		
			Marks: 100 DDE: B1127		
Answe	r Question No.	-	are compulsory	and any four fi	rom the rest.
210			hand margin in		210
	or the following	questions: mul	tiple type or das	h fill un type	(2x*
			lation has been ca		•
	ctive medium tech		. Enrichment medi		
	ferential medium to by the streatment	• •	 All of the above ell walls are partia 		estroved
	e remaining cellu			any completely at	John of John,
		· 010	rotoplast iv. No nich the primary m	ne of the above	
-	hophase	-	Logarithimic phase	•	ouuceu,
iii. No	ne of the above	iv	All of the above.		
d) Which i. CO		iii. Glucose	the greatest amou iv. O ₂ , e. Lac		a cell?
			components of the		
	cteristic of;		,. ,,		
0.4.0	batch culture, Fed-batch cultur	°e. 210	ii. continues culto		210
f) Plasm	ids differ from tra	ansposons as			
	ome inserted into self-replicated סו		22222		
	achromosomal m		JSOINE,		
	ry genes for antil				
• /	ample of lysogen v viral infections	•	d be atent viral infectior	าร	
²¹⁰ iii. T-€	ven bacteriophag	ges ²¹⁰ iv. ir	nfections resulting	in cell [®] death,	210
			I condenser with a		
-	ive lens.		ectly; light reflecte	ed by specifiente	
i) Chlora	amphenicol binds		on of a ribosome,		re with
	scription in proka slation in prokar		ii. transcription in iv. DNA synthesis		
	type of radiation			-	
²¹⁰ i. ioniz	zing, ²¹⁰ ii. Non	ionizing ²¹⁰ iii.	radiowaves, iv. a	II of the above	210
Q2 Answ	er the following	questions: Sho	ort answer type		(2x ²
a) Expla	in Ziehl-neelsen s	staining.			· ·
	entiate between s is conjugation? M				
	e generalized tran		e of conjugation.		
	schematic repre				
	two food₂preserva a ray diagramatic			210	210

	210		210	210	210	210	210		210
	-	has a generati			nos of <i>P. aerugind</i> s would be in the				
Q3			ultra structure of between Gram +\	bacterial cell. ve and Gram –ve	bacteria.	210	210	(10) (5)	210
Q4				poilage microorga ervation for food	anisms. spoilage microor			(10) (5)	
Q5			account on Entre cs of ED pathwa	er-Doudoroff (ED y.) pathway?			(10) (5)	
Q6				of bacterial genc soand episomes		210	210	(10) (5)	210
Q7		Assume that decide to do a dilute 1g of th	after washing yo a plate count of e soap 1:10 ⁶ and	ur hands, you le the soap after it d plate it on heter	lard curve of bact ave 10 bacterial was left in the so rotrophic plate co bacteria were on	cells on soap. Yo pap dish for 24 h punt agar. After 2	rs. You	(10) (5)	
Q8		microbiologic		be various typ	es of sterilizati	ion methods u	sed in	(10) (5)	210
Q9	a)	Define mutag	-	s on site directed	d mutagenesis.			(3) (10) (5)	
	210		210	210	210	210	210		210
	210		210	210	210	210	210		210
	210		210	210	210	210	210		210
	210		210	210	210	210	210		210

210 210 210 210 210 210 210 210 210	210 210	210	210	210	210	210	
-------------------------------------	---------	-----	-----	-----	-----	-----	--